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Abstract

Most online platforms strive to learn from interactions with users, and many engage in
exploration: making potentially suboptimal choices for the sake of acquiring new information.
We study the interplay between exploration and competition: how such platforms balance the
exploration for learning and the competition for users. Here users play three distinct roles:
they are customers that generate revenue, they are sources of data for learning, and they are
self-interested agents which choose among the competing platforms.

We consider a stylized duopoly model in which two firms face the same multi-armed
bandit problem. Users arrive one by one and choose between the two firms, so that each firm
makes progress on its bandit problem only if it is chosen. Through a mix of theoretical results
and numerical simulations, we study whether and to what extent competition incentivizes the
adoption of better bandit algorithms, and whether it leads to welfare increases for users. We
find that stark competition induces firms to commit to a “greedy” bandit algorithm that leads
to low welfare. However, weakening competition by providing firms with some “free” users
incentivizes better exploration strategies and increases welfare. We investigate two channels for
weakening the competition: relaxing the rationality of users and giving one firm a first-mover
advantage. Our findings are closely related to the “competition vs. innovation” relationship,
and elucidate the first-mover advantage in the digital economy.
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1 Introduction
Learning from interactions with users is ubiquitous in modern customer-facing platforms, from
product recommendations to web search to content selection to fine-tuning user interfaces. Many
platforms purposefully implement exploration: making potentially suboptimal choices for the sake
of acquiring new information. Online platforms routinely deploy A/B tests, and are increasingly
adopting more sophisticated exploration methodologies based on multi-armed bandits, a standard
and well-studied framework for exploration and making decisions under uncertainty. This trend
has been stimulated by two factors: almost-zero cost of deploying iterations of a product (provided
an initial infrastructure investment), and the fact that many online platforms primarily compete on
product quality, rather than price (e.g., because they are supported by ads or cheap subscriptions).

In this paper, we study the interplay between exploration and competition.1 Platforms that
engage in exploration typically need to compete against one another. Most importantly, platforms
compete for users, who benefit them in two ways: generating revenue and providing data for
learning. This creates a tension: while exploration may be essential for improving the service
tomorrow, it may degrade the service quality today, in which case some of the users can leave and
there will be fewer users to learn from. This may create a “data feedback loop” when the platform’s
performance further degrades relative to competitors who keep learning and improving from their
users, and so forth. Taken to the extreme, such dynamics may cause a “death spiral” effect when the
vast majority of customers eventually switch to competitors.

The main high-level question we ask is: Whether and how does competition between plat-
forms incentivize the adoption of better exploration algorithms? This translates into a number
of more concrete questions. While it is commonly assumed that better technology always helps,
is this so under competition? Does increased competition lead to higher consumer welfare? How
significant are the data feedback loops and how they relate to the anti-trust considerations? We
offer a mix of theoretical results and numerical simulations, in which we study complex interactions
between platforms’ learning dynamics and users’ self-interested behavior. Prior work on exploration
vs. competition targets technically very different models of competition which are not amenable to
our high-level question (as we discuss in Section 2).
Our model: competition game. We consider a stylized duopoly model in which two firms
(principals) compete for users (agents). Principals compete on quality rather than on prices, and
engage in exploration in order to learn which actions lead to high quality products. Agents arrive
sequentially. A new agent arrives and chooses a principal (more on this below). The principal
selects an action which affects the quality of service provided to this agent, e.g., a list of web search
results. The agent experiences this action and the resulting reward from this action is observed by
the principal. Each principal only observes its own users. Principals commit to their strategies in
advance, so as to maximize their market share.

In more detail, the principal-side model is as follows. Each principal faces a basic and well-
studied version of the multi-armed bandit problem, where each reward is drawn independently
from a fixed, action-specific distribution. Each principal’s pure strategy is a multi-armed bandit
algorithm, which dynamically adjusts to the observed rewards. However, it is oblivious to all signals
on competition (such as the market share or the competitor’s choices or rewards), even when such
signals are available. This modeling choice reflects the reality of industrial applications, which

1I.e., we add competition to the standard exploration-exploitation tradeoff studied in multi-armed bandits.
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follow a huge body of knowledge in machine learning; more on this in Section 3.1. Due to similar
practical considerations, we expect the actual strategy choice to reflect the competition game only
in a crude, qualitative way. Hence, basic outcomes under competition are worth studying per se, not
only as a stepping stone to equilibrium characterization.

To flesh out the meaning of better exploration algorithms, as per the main question, we draw
on the literature from machine learning. We consider algorithm’s performance in isolation: in a
standalone exploration problem without competition. Rewards are not discounted with time, and
we focus on big, qualitative differences in asymptotic regret rates. One baseline is algorithms that
do not purposefully explore, and instead make myopically optimal decisions; we call them greedy
algorithms. In isolation, they are known to perform poorly for a wide variety of problem instances.

The agent-side model is as follows. When an agent arrives, she forms a reward estimate for
each principal, and then chooses a principal using these reward estimates according to some fixed
decision rule. Modeling the reward estimates is subtle, as one needs to specify how the agents
know and interpret the principals’ algorithms and the algorithms’ past performance. We consider
two extremes for this issue: Bayesian agents that know the algorithms but do not observe the past
performance, and frequentist agents that observe each algorithm’s recent average performance
(“reputation score”) but have no prior knowledge or beliefs on the algorithms. The Bayesian model
follows a standard rational “template” in theoretical economics, whereas the frequentist model
is more realistic. We find that the former is amenable to theoretical analysis, and the latter to
simulations. Our main findings are similar for both.

Throughout our results, we investigate two channels for weakening the competition: relaxing
the rationality of users (via their decision rule) and giving one firm a first-mover advantage.
Theoretical results in a Bayesian model. We consider a Bayesian model (called the Bayesian-
choice model), where agents have a common Bayesian prior on reward distributions, know the
principals’ algorithms and their own arrival times, but do not observe the previous agents’ choices
or rewards. Each agent computes Bayesian-expected rewards for both principals, and uses them
as reward estimates to decide which principal to choose. Our results depend crucially on agents’
decision rule:

(i) The most obvious decision rule maximizes the reward estimate; we call it HardMax. We
find that it is not conducive to adopting better algorithms: each principal’s dominant strategy is to
choose the greedy algorithm. Further, if the tie-breaking is probabilistically biased in favor of one
principal, the latter can always prevail in competition.

(ii) We dilute the HardMax agents with a small fraction of “random agents” who choose a
principal uniformly at random. (They can be interpreted as consumers that are oblivious to the
principals’ reputation.) We call this model HardMax&Random. Then better algorithms help in
a big way: when two algorithms compete against one another, a sufficiently better algorithm is
guaranteed to win all non-random agents after an initial learning phase. There is a caveat, however:
any algorithm can be defeated by interleaving it with the greedy algorithm. Consequently, a better
algorithm may sometimes lose in competition, and a pure Nash equilibrium typically does not exist.

(iii) We further soften the decision rule so that the selection probabilities vary smoothly in terms
of the reward estimates. We call it SoftMax, a more realistic middle ground between HardMax and
random agents.In the most technical result of the paper, we find that a sufficiently better algorithm
prevails under much weaker assumptions.
Numerical simulations in a frequentist model. We then consider a frequentist model (called the
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reputation-choice model), where agents observe signals about the principals’ past performance and
make their decisions naively, without invoking any prior knowledge or beliefs. The performance
signals are aggregated as a scalar reputation score for each principal, modeled as a sliding window
average of its rewards. Thus, agents’ decision rule depends only on the two reputation scores.
While this model uses more realistic assumptions about agent choices and allows us to characterize
outcomes in finite samples, we provide numerical simulations to characterize the outcomes of
interest. This allows us to refine and expand the results from the Bayesian model in several ways:

(i) We find that the greedy algorithm often wins under the HardMax decision rule, with a strong
evidence of the “death spiral” effect mentioned earlier. As predicted by the theory, better algorithms
prevail under HardMax&Random with enough “random” users.

(ii) Focusing on HardMax, we investigate the first-mover advantage as a different channel to
vary the intensity of competition: from the first-mover to simultaneous entry to late-arriver. We find
that the first-mover is incentivized to choose a more advanced exploration algorithm, whereas the
late-arriver is often incentivized to choose the “greedy algorithm” (more so than under simultaneous
entry). Consumer welfare is higher under early/late arrival than under simultaneous entry. We frame
these results in terms of an inverted-U relationship.

(iii) However, the greedy algorithm is sometimes not the best strategy under high levels of
competition.2 We revisit algorithms’ performance in a standalone bandit problem, i.e., without
competition. We find that the most natural performance measure does not explain this phenomenon,
and suggest a new, more nuanced one that does.

(iv) We decompose the first-mover advantage into two distinct effects: free data to learn from
(data advantage), and a more definite, and possibly better reputation compared to an entrant
(reputation advantage), and run additional experiments to separate and compare them. We find
that either effect alone leads to a significant advantage under competition. The data advantage is
larger than reputation advantage when the incumbent commits to a more advanced bandit algorithm.
Finally, we find an “amplification effect” of the data advantage: even a small amount thereof gets
amplified under competition, causing a large difference in eventual market shares.
Economic Interpretations. Our findings are consistent with Schumpeter’s inverted-U relation-
ship between competition and innovation, whereby too little or too much competition is bad for
innovation, but intermediate levels of competition tend to be better (Schumpeter, 1942; Aghion
et al., 2005; Vives, 2008). We interpret innovation as the adoption of better exploration algorithms,3

and control the severity of the competition by varying the agents’ decision rule from HardMax

(cut-throat competition) to HardMax&Random to SoftMax and all the way to the uniform selection.
Another, technically different inverted-U relationship zeroes in on the HardMax&Random model.

Our model also speaks to policy discussions on regulating data-intensive digital platforms
(Furman et al., 2019; Scott Morton et al., 2019), and particularly to the ongoing debate on the role
of data in the digital economy. One fundamental question in this debate is whether data can serve a
similar role as traditional “network effects”, creating scenarios when only one firm can function in
the market (Rysman, 2009; Jullien and Sand-Zantman, 2019). The death spiral/amplification effects
mentioned above have a similar flavor: a relatively small performance loss due to exploration (resp.,

2In our theoretical results on HardMax, the greedy algorithm is always the best strategy, mainly because it is aware
of the Bayesian prior (whereas in the simulations the prior is not available).

3Adoption of exploration algorithms tends to require substantial R&D effort in practice, even if the algorithms are
well-known and/or similar technologies already exist elsewhere (e.g., see Agarwal et al., 2017).
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data advantage) gets amplified under competition and causes the firm to be starved of users (resp.,
take over most of the market). However, a distinctive feature of our approach is that the network
effects arise endogenously.

Our results highlight that understanding the performance of learning algorithms in isolation does
not necessarily translate to understanding their impact in competition, precisely due to the fact that
competition leads to the endogenous generation of observable data. Approaches such as Lambrecht
and Tucker (2015); Bajari et al. (2018); Varian (2018) argue that the diminishing returns to scale
and scope of data in isolation mitigate such data feedback loops, but ignore the differences induced
by learning in isolation versus under competition. Explicitly modeling the interaction between
learning technology and data creation allows us to speak on how data advantages are characterized
and amplified by the increased quality of data gathered by better learning algorithms, not just the
quantity thereof. In particular, we find that incumbency is good for innovation and welfare, and
creates a barrier to entry, all due to data feedback loops.
Significance. Our results have a dual purpose: shed light on real-world implications of some typical
scenarios, and investigate the space of models for describing the real world. As an example for the
latter: while the HardMax model with simultaneous entry is arguably the most natural model to study
a priori, our results elucidate the need for more refined models with “free exploration” (e.g., via
random agents or early entry). On a technical level, we connect a literature on regret-minimizing
bandits in machine learning and that on competition in economics.

The two technical parts of the paper, Bayesian/theoretical and frequentist/experimental, are
on equal footing. While one does not provide direct experimental (resp., theoretical) justification
for the other, they yield consistent conclusions, and present two complementary but different
approaches to attack the same problem. Our theory takes a Bayesian perspective, standard in
economic theory, and discovers several strong asymptotic results. Much of the difficulty, both
conceptual and technical, is in setting up the model and the theorems. In particular, it was crucial
to interpret the results and intuitions from the literature on multi-armed bandits so as to formulate
meaningful and productive assumptions on bandit algorithms and Bayesian priors. The numerical
simulations for the frequentist model provide a more nuanced and “non-asymptotic” perspective. In
essence, we look for substantial effects within relevant time scales. (In fact, we start our investigation
by determining what time scales are relevant in the context of our model.) The central challenge
is to capture a huge variety of bandit algorithms and bandit problem instances with only a few
representative examples, and arrive at findings that are consistent across the entire space.

The Bayesian model is suitable for analysis and the frequentist model for simulations, but not
vice versa. A natural implementation of the Bayesian model requires running time quadratic in the
number of rounds,4 which precludes numerical simulations at a sufficient scale. The frequentist
model features an intricate feedback loop between algorithms’ performance, their reputations and
agents’ choices, which simplifies the simulations but does not appear analytically tractable.

4E.g., this is because at each round t, one needs to recompute, and integrate over, a discrete distribution with t
possible values, namely the number of agents that have chosen principal 1 so far.
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2 Related work

Exploration. Multi-armed bandits (MAB) is an elegant and tractable abstraction for tradeoff between
exploration and exploitation: essentially, between acquisition and usage of information. MAB
problems have been studied for many decades by researchers from computer science, operations
research, statistics and economics, generating a vast and multi-threaded literature. The most relevant
thread concerns the basic model of regret-minimizating bandits with stochastic rewards and no
auxiliary structure (which is the problem faced by each principal in our model), see Appendix A for
background. This basic model has been extended in many different directions, with a considerable
amount of work on each: e.g., payoffs with a specific structure (e.g., combinatorial, linear, convex
or Lipschitz), payoff distributions that change over time, and auxiliary payoff-relevant signals.
Dedicated monographs (Bubeck and Cesa-Bianchi, 2012; Slivkins, 2019; Lattimore and Szepesvári,
2020) cover the work on regret-minimizing formulations (which mainly comes from computer
science). The classic book (Gittins et al., 2011) focuses on the Markovian formulations, which
predate regret-minimization. Connections to economics are detailed in books (Cesa-Bianchi and
Lugosi, 2006; Slivkins, 2019) and surveys (Bergemann and Välimäki, 2006; Hörner and Skrzypacz,
2017). Industrial applications are discussed in (Agarwal et al., 2017).

A monopolistic bandit algorithm may interact with self-interested parties, leading to a tension
between exploration and incentives. This tension has been studied in several scenarios: incentivized
exploration in recommendation systems (starting from Kremer et al. (2014); Che and Hörner (2018),
see Slivkins (2019, Ch. 11)), dynamic auctions (Bergemann and Said, 2011), pay-per-click ad
auctions (e.g., Babaioff et al., 2014; Devanur and Kakade, 2009), coordinating search and matching
(Kleinberg et al., 2016), and human computation (e.g., Ho et al., 2016; Ghosh and Hummel, 2013).
Unlike this work, we focus on incentives created in a competition.
Exploration and competition. Several papers consider exploration algorithms in scenarios when
the explorer is not a monopolist. The technical models are very different, and not amenable to the
high-level question articulated in the Introduction.

Bergemann and Välimäki (1997, 2000) and Keller and Rady (2003) study the interplay of
exploration and competition for users when the competing firms experiment with prices (whereas in
our model the firms experiment with design alternatives). All three papers consider environments
with fixed product quality and dynamic strategies that respond to competition, and analyze Markov-
perfect equilibria. In contrast, we consider a one-shot game where firms commit to algorithms for
their bandit problem and the goal is to learn the best product alternative. This results in the nature
of exploration being fundamentally different relative to these papers and, as such, we focus on
different outcomes of interest relative to these papers.

In the line of work on strategic experimentation (starting from Bolton and Harris (1999); Keller
et al. (2005), see Hörner and Skrzypacz (2017) for a survey), agents explore and learn over time
in a shared environment. Thus, we have exploration algorithms which interact with each other
strategically, e.g., each agent prefers to free-ride on someone else’s exploration. However, this work
is all about cooperation (or lack thereof), rather than competition.

Several papers study competition between two principals who run algorithms but do not interact,
directly or indirectly, until the very end of the game. Akcigit and Liu (2016) consider a “research
competition” between two firms racing towards a big discovery. Each firm deploys a bandit
algorithm with two arms, corresponding to safe and risky lines of research. The firms do not interact
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until one of them makes the discovery and wins the game. In the “dueling algorithms” framework
of Immorlica et al. (2011), each principals runs an algorithm for the same problem. All inputs
are observable at once, and principals’ payoffs are binary (win/lose). Ben-Porat and Tennenholtz
(2019) study competition between “offline” machine learning algorithms. In comparison, we study
a “product competition” in which the two firms interact continuously (via the customers’ choices),
accrue rewards incrementally, and compete for individual customers.

A long line of work from electrical engineering and computer science, starting from Lai et al.
(2008); Liu and Zhao (2010), focuses on competition for resources, not competition for consumers.
Specifically, this literature targets an application to cognitive radios, where multiple radios transmit
simultaneously in a shared medium and compete for bandwidth. Each radio chooses channels over
time using a multi-armed bandit algorithm. This work studies a repeated game between bandit
algorithms, and focuses on designing algorithms which work well in this game.
Competition. The competition vs. innovation relationship and the inverted-U shape thereof have
been introduced in a classic book (Schumpeter, 1942), and remained an important theme in the
literature ever since (e.g., Aghion et al., 2005; Vives, 2008). This literature treats innovation as
R&D that improves the products and, R&D costs aside, is a priori beneficial for the firm. In contrast,
we focus on innovation in exploration technology which systematically improves the firm’s products
and crucially depends on data generated by the firm’s customers. In particular, we find that such
innovation may potentially hurt the firm. We recover the inverted-U relationship purely through the
reputational consequences of exploration, whereas prior work relies on costs and profits.

The literature on learning-by-doing vs. competition (e.g., Fudenberg and Tirole, 1983; Dasgupta
and Stiglitz, 1988; Cabral and Riordan, 1994) studies firms that learn while competing against each
other, so that a firm attracting more consumers reduces its production costs. Our model differs
in several important respects. First, firms learn to improve product quality rather than to reduce
production costs. Second, the firms’ current actions have consequences (via reputation and/or
data collected by the algorithm) that directly impact consumer choices in the future. Third, we
endogenize the technology behind learning-by-doing by explicitly considering bandit algorithms.

A line of work on platform competition (starting with Rysman (2009), see Weyl and White
(2014) for a survey) concerns competition between firms that improve as they attract more users.
This literature is not concerned with innovation, and typically models network effects exogenously,
whereas they are endogenous in our model. A nascent literature studies network effects in data-
intensive markets (Prufer and Schottmüller, 2017; Hagiu and Wright, 2020), but typically models
learning as a reduced-form function of past consumer history and focuses on the role of prices.

Schmalensee (1982); Bagwell (1990) investigate how buyer uncertainty about product quality
can serve as a barrier to entry for late arrivers; we find a similar effect with “reputation advantage”.
De Corniere and Taylor (2020) note the role of data as a barrier to entry in online markets; we find a
similar effect with “data advantage”. Kerin et al. (1992) overview other channels through which
first-mover advantage can affect competition.

While we use first-mover advantage and agents’ decision rule, classic “market competitiveness”
measures, such as the Lerner Index or the Herfindahl-Hirschman Index (Tirole, 1988), are not
applicable to our setting, as they rely on ex-post observable market attributes such as prices or
market shares (which are, resp., absent and endogenous for us).
Choice models. Stochastic choice models similar to ours are widely used in economics. “Random
agents” (a.k.a. noise traders) can side-step the “no-trade theorem” (Milgrom and Stokey, 1982),

8



a famous impossibility result in financial economics. They play a similar role in our model, side-
stepping the dominance of the greedy algorithm. Moreover, SoftMax subsumes the logit choice rule,
a standard behavioral model with strong empirical and microeconomic foundations (e.g., Mosteller
and Nogee, 1951; Luce, 1959; Matějka and McKay, 2015). Choice models similar to SoftMax are
used to explain horizontal product differentiation (e.g., Hotelling, 1929; Perloff and Salop, 1985).

3 Our model in detail

Principals and agents. There are two principals and T agents. We denote them, resp., principal
i ∈ {1, 2} and agent t ∈ [T ], where [T ] := {1, 2 , . . . , T}.

In each round t ∈ [T ], the following interaction takes place. Agent t arrives and chooses a
principal it ∈ {1, 2}. The principal chooses action at ∈ A, where A is a fixed set of actions.5 The
agent experiences this action and receives an associated reward rt ∈ {0, 1}, which is then observed
by the principal. We posit stochastic rewards: whenever a given action a ∈ A is chosen, the reward
is an independent draw from Bernoulli distribution with mean µa. In particular, the mean rewards
µa, as well as the action set A, are the same for both principals and all rounds. The mean rewards
are initially not known to anybody. The principals are completely unaware of the rounds when the
opponent is chosen. Thus, each principal follows the protocol of multi-armed bandits (henceforth,
MAB). That is: in each round when it is chosen, the principal picks an action from A and observes a
reward for this action (and nothing else).

Each principal i commits to an MAB algorithm algi before round 1, and uses this algorithm
throughout the game. The algorithm proceeds in time-steps: each time it is called, it outputs an
arm from A, and inputs a reward for this action. The algorithm is called only in game rounds when
principal i is chosen. When the distinction between algorithm’s time-steps and game rounds is
unclear from the context, we will refer to them as, resp., local steps/rounds and global rounds.
Agent response. Each agent t forms a reward estimate ESTi(t) ∈ [0, 1] for each principal i.
(What these estimates are, and how much the agents know in order to form them, depends on the
Bayesian vs. frequentist model variant.) The reward estimates determine the choice of the principal.
Specifically, agent t chooses principal 1 with probability

pt = fresp ( EST1(t)− EST2(t) ) , (1)

where fresp : [−1, 1]→ [0, 1] is the response function, same for all agents. We assume that fresp is
monotonically non-decreasing, is larger than 1/2 on the interval (0, 1], and smaller than 1/2 on the
interval [−1, 0). We consider three variants for fresp, depicted in Figure 1:

• HardMax: fresp equals 0 on the interval [−1, 0) and 1 on the interval (0, 1]. In words, a
HardMax agent deterministically chooses a principal with a higher reward estimate.

• HardMax&Random: fresp equals ϵ0 on the interval [−1, 0) and 1− ϵ0 on the interval (0, 1], for
some constant ϵ0 ∈ (0, 1

2
). In words, each agent is a HardMax agent with probability 1− 2ϵ0,

and makes a random choice otherwise.
5We use ‘action’ and ‘arm’ interchangeably, as common in the literature on multi-armed bandits.
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∆t := EST1(t)− EST2(t)

pt = prob. of choosing principal 1

1/2

1

0 1−1

Figure 1: The models for fresp: HardMax is thick blue, HardMax&Random is red, and SoftMax is dashed.

• SoftMax: fresp lies in [ϵ0, 1 − ϵ0], breaks ties fairly, and has a bounded derivative around
0 (see Definition 4.15 for a formal definition). Intuitively, fresp is a smoothed version of
HardMax&Random, without a sharp threshold therein.

HardMax&Random and SoftMax agents can be interpreted in several ways. First, they make
mistakes, due to lack of awareness or interest. Second, they give some chance to the non-preferred
principal, due to curiosity or a behavioral effect like probability matching. Third, they can be
realized as a distribution over more “basic” agent types. Indeed, the HardMax&Random distribution
is a mixture of HardMax and “random agents” (which choose a principal uniformly at random).
The latter can be interpreted as consumers that are completely oblivious to principals’ reputation.
One can obtain a SoftMax response function using agent types that choose a principal i with a
largest reward estimate ESTi, unless |EST1− EST2| is upper-bounded by some parameter θ, in which
case they choose uniformly. Then, we obtain SoftMax as a mixture of random agents and these
“θ-HardMax” agents, for a suitable distribution over θ.
Bayesian vs. frequentist variants. We consider two model variants, Bayesian and frequentist (we
use them, resp., for theoretical results and numerical simulations). The main difference between the
two concerns the agents’ reward estimates ESTi(t).

In the Bayesian-choice model, the mean reward vector µ = (µa : a ∈ A) is drawn from a
common Bayesian prior Pmean. Each agent knows its global round t, but not the performance signals
such as the current market shares. Her reward estimates are defined as posterior mean rewards:
ESTi(t) = PMRi(t) := E [ rt | it = i ] for each principal i, where the agent knows t, the principals’
algorithms, Pmean, and fresp.

In the reputation-choice model, agents’ reward estimate for a given principal is the average
reward of the last M agents that chose this principal. We call it reputation score, and interpret it
as the current reputation. To make it meaningful initially, each principal enjoys a “warm start”:
additional T0 agents arrive before the game starts, and interact with the principal as described above.
Competition game. Some of our results explicitly study the game between the two principals,
termed the competition game. We model it as a simultaneous-move game: before the first agent
arrives, each principal commits to an MAB algorithm. Principals are risk-neutral; their utility is
defined as their market share, i.e., the number of agents they attract. Thus, they aim to select the
algorithm that maximizes their expected market share.6

6The immediate goal of principals’ MAB algorithms is (still) to maximize agents’ rewards, so as to attract agents.
Besides, it is unclear how to maximize market share directly within our model. Note that in extensions (Section 4.6) the
principals’ utility can also depend on rewards.

10



The distinction between a pure and mixed strategy in this game is worth clarifying. For each
principal, a pure strategy commits to a particular MAB algorithm. A mixed strategy chooses a
particular MAB algorithm at random from a mixture, and then commits to this algorithm. While a
mixed strategy induces a randomized MAB algorithm, it differs from a pure strategy with the same
algorithm in that the realization of the mixture is revealed to the agents.
Extensions. The Bayesian-choice model admits several extensions, detailed in Section 4.6. First,
all/most results extend to arbitrary reward distributions, allow reward-dependent utility, and carry
over to a more general version of multi-armed bandits. Second, agents could have beliefs on
(alg1, alg2,Pmean, fresp) that need not be correct; then, all results carry over with respect to these
beliefs. Third, we can handle a limited amount of non-stationarity in fresp for the HardMax&Random
and SoftMax decision rules. Finally, the main result on HardMax extends to time-discounted utilities.
“Non-strategic” exploration strategies. We focus on a realistic scenario when the exploration
strategies available to the principals are “non-strategic” in nature. Even though the principals
play a multi-step game, they do not react to each other’s moves or to the agents’ strategic choices.
This is how industry approaches exploration algorithms, for several reasons. First, ”non-strategic”
exploration is well-studied in machine learning, and yet it remains a very complex and actively
studied subject in research. Even the seemingly simple algorithms are not straightforward to
deploy in practice, and require a substantial investment in infrastructure (e.g., see the discussions in
Agarwal et al. (2017) and Slivkins (2019, Chapter 8.7)). Responding to the competition represents
another layer of complexity which has not been previously studied in this context, to the best
of our knowledge, let alone made even remotely practical. Second, the competitor’s exploration
strategy is typically not public, and understanding its exploration behavior via observations appears
challenging even as a research problem. Third, while the principals could potentially react to the
market share or the reputation scores, baking these signals into one’s exploration strategy runs
the risk of over-interpreting our competition model, as they may change for exogenous reasons.
Alternatively, one could use such signals, as well as the intuitions coming from this paper, to guide
the platform’s decisions regarding exploration.
Bandit algorithms. Our treatment of bandit algorithms is very standard in machine learning — the
primary community where these algorithms are designed and studied — but perhaps less standard
in economic theory. The main tenets are as follows.

(i) Algorithms are designed for vanishing regret without time-discounting, and compared theo-
retically based on their asymptotic regret rates (rather than Bayesian-optimal time-discounted
reward, as in Gittins index, a more standard economic perspective). Indeed, non-discounted,
regret-minimizing formulations has been prevalent in the bandits literature over the past two
decades (Slivkins, 2019; Lattimore and Szepesvári, 2020), and better correspond to practical
deployments (e.g., Agarwal et al., 2017).

(ii) A key distinction is between no exploration (the “greedy” algorithm), fixing the exploration
schedule in advance (“exploration-separating” algorithms, e.g., the epsilon-greedy algorithm),
and adapting exploration to the past observations (e.g., Thompson Sampling). Accordingly,
there’s a stark 3-way distinction in asymptotic regret rates. In particular, our numerical results
use a standard, representative algorithm from each of the three classes.

Self-contained background regarding the two tenets can be found in Appendix A.
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3.1 Discussion: stylized model
Our models are stylized in several important respects. Firms compete only on the quality of service,
rather than, say, pricing or the range of products. Agents are myopic: they do not worry about
how their actions impact their future utility.7 On the machine learning side, we focus on qualitative
distinctions described above, rather than state-of-art algorithms for realistic applications.

For the Bayesian-choice model, agents do not observe any signals about the principals’ past
performance, making agents’ behavior independent of a particular realization of the prior. This
allows us to summarize each learning algorithm via its Bayesian-expected rewards, not worrying
about its detailed performance on particular realizations of the prior. Such summarization is essential
for formulating lucid and general analytic results, let alone proving them.

For the reputation-choice model, various performance signals available to the users, from
personal experience to word-of-mouth to consumer reports, are abstracted as persistent “reputation
scores” reflecting the current reputation, and further simplified to average performance over a sliding
time window. The reputation scores directly account for competition, allowing the users to have no
direct information on the algorithms deployed or the bandit problem faced by the firms. The latter
property makes our model amenable to numerical simulations.

4 Theoretical results: the Bayesian-choice model
In this section, we present our theoretical results for the Bayesian-choice model. While we provide
intuition and proof sketches, the detailed proofs are deferred to Appendix D.

4.1 Preliminaries
Let rewi(n) denote the agent’s realized reward observed by principal i at local step n, i.e., the
reward collected by algorithm algi in this local step. For a global round t, let ni(t) denote
the number of global rounds before t in which principal i is chosen. We will use the fact that
PMRi(t) := E [ rt | it = i ] = E [ rewi(ni(t) + 1) ] .
Assumptions. We make two mild assumptions on the prior. First, each arm a can be best:

∀a ∈ A : Pr [µa > µa′ ∀a′ ∈ A \ {a} ] > 0. (2)

Second, posterior mean rewards are pairwise distinct given any feasible history h:8

E[µa | h] ̸= E[µa′ | h] ∀a, a′ ∈ A. (3)

In particular, prior mean rewards are pairwise distinct: E[µa] ̸= E[µ′
a] for any a, a′ ∈ A.

In Appendix C, we provide two examples for which property (3) is ‘generic’, in the sense that
it can be enforced almost surely by a small random perturbation of the prior. The two examples
concern, resp., Beta priors and priors with a finite support, and focus on priors Pmean that are
independent across arms.

7So, agents do not attempt to learn over time, game future agents, or manipulate the principals’ learning algorithms.
This is arguably typical in practice, in part because one agent’s influence tends to be small.

8The history of an MAB algorithm at a given step t comprises actions as and rewards rs in all previous steps s < t.
The history is feasible if for each s, reward rs is in the support of the reward distribution for as.
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MAB algorithms. We consider two baseline algorithms. The main one, called BayesGreedy,
chooses an arm a with the largest posterior mean reward E[µa | ·] given all information currently
available to the algorithm. A more primitive baseline, called StaticGreedy, chooses an arm a with
the largest prior mean reward E[µa], and uses this arm in all rounds.

We characterize the inherent quality of an MAB algorithm in terms of its Bayesian Instantaneous
Regret (henceforth, BIR), a standard notion from machine learning:

BIRi(n) := E[ maxa∈A µa − rewi(n) ]. (4)

We are primarily interested in how fast BIR decreases with n. (We treat the number of arms as
a constant.) Intuitively, (much) better MAB algorithms tend to have a (much) smaller BIR, see
Appendix A for background. An algorithm is called Bayesian-monotone if it can only get better
over time, in the Bayesian sense: namely, if E[rewi(·)] is non-decreasing, and therefore BIR(·) is
non-decreasing. This is a mild assumption, see Appendix B.

4.2 HardMax response function
We consider agents with HardMax response function, and show that principals are not incentivized
to explore, i.e., to deviate from BayesGreedy. The core technical result is that if one principal
adopts BayesGreedy, then the other principal loses all agents as soon as he deviates therefrom. We
make this formal below.

Definition 4.1. One MAB algorithm deviates from another at (local) step n if there is a set H of
histories over the previous local steps such that both algorithms lead to H with positive probability,
and choose different distributions over arms given any history h ∈ H . If n = n0 is the smallest
such step, we say alg deviates from alg′ starting from step n0.

Theorem 4.2. Assume HardMax response function with fair tie-breaking: fresp(0) = 1/2. Assume
that alg1 is BayesGreedy, and alg2 deviates from BayesGreedy starting from some (local) step
n0 < T . Then all agents in global rounds t ≥ n0 select principal 1.

BayesGreedy is a weakly dominant strategy in the competition game, and a unique Nash
equilibrium. This is because BayesGreedy receives, in expectation, at least half of the agents
before global round n0, and all agents after that; both are the best possible against alg2. Moreover,
BayesGreedy guarantees at least T/2 agents in expectation, and any other strategy can receive
strictly less, e.g., if the opponent chooses BayesGreedy.

Likewise, consider any mixed Nash equilibrium. On the one hand, each principal can guarantee
exactly half of the market share by mimicking the strategy of the opponent. On the other hand, if
one principal’s mixed strategy is not BayesGreedy, then the opponent can grab more than a half of
the market share by switching to BayesGreedy. It follows that (BayesGreedy,BayesGreedy) is a
unique Nash equilibrium, whether pure or mixed.

Corollary 4.3. BayesGreedy is a weakly dominant strategy in the competition game. The game
has a unique mixed Nash equilibrium: both principals choose BayesGreedy.

The proof of Theorem 4.2 relies on two key lemmas: that deviating from BayesGreedy implies
a strictly smaller Bayesian-expected reward, and that HardMax implies a “sudden-death” property:
if one agent chooses principal 1 with certainty, so do all subsequent agents. We re-use both lemmas
in later results, so we state them in sufficient generality.
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Lemma 4.4. Assume that alg1 is BayesGreedy, and alg2 deviates from BayesGreedy starting
from some (local) step n0 < T . Then E[rew1(n0)] > E[rew2(n0)]. The lemma holds for any
response function fresp (as it only considers the stand-alone performance of each algorithm).

Lemma 4.5. Consider HardMax response function with fresp(0) ≥ 1
2
. Suppose alg1 is Bayesian-

monotone, and PMR1(t0) > PMR2(t0) for some global round t0. Then PMR1(t) > PMR2(t) for all
subsequent rounds t.

The sudden-death property in Lemma 4.5 holds because principal 1 appears at least as good or
better to the next agent (by the Bayesian-monotonicity property), whereas principal 2 appears the
same as before. Principal 2 needs new data in order to improve, and it does not receive new data
unless the response function is randomized.

The remainder of the proof of Theorem 4.2 uses the conclusion of Lemma 4.4 to derive the
precondition for Lemma 4.5, i.e., goes from E[rew1(n0)] > E[rew2(n0)] to PMR1(n0) > PMR2(n0).
The subtlety one needs to deal with is that the principal’s “local” round corresponding to a given
“global” round is a random quantity due to the random tie-breaking.
Biased tie-breaking. The HardMax model is very sensitive to tie-breaking between the principals.
If ties are broken deterministically in favor of principal 1, this principal can get all agents no matter
what the other principal does, simply by using StaticGreedy.

Theorem 4.6. Assume HardMax response function with fresp(0) = 1 (ties are always broken in
favor of principal 1). If alg1 is StaticGreedy, then all agents choose principal 1.

Proof Sketch. Agent 1 chooses principal 1 because of the tie-breaking rule. Since StaticGreedy is
trivially Bayesian-monotone, all the subsequent agents choose principal 1 by an induction argument
similar to the one in the proof of Lemma 4.5.

A more challenging scenario is when the tie-breaking is biased in favor of principal 1, but not
deterministically so: fresp(0) > 1

2
. Then this principal also has a “winning strategy” no matter what

the other principal does. Specifically, principal 1 can get all but the first few agents, under a mild
assumption that BayesGreedy deviates from StaticGreedy.

Theorem 4.7. Assume HardMax response function with fresp(0) > 1
2

(i.e., tie-breaking is biased in
favor of principal 1). Assume the prior P is such that BayesGreedy deviates from StaticGreedy

starting from some step n0. Suppose that principal 1 runs a Bayesian-monotone MAB algorithm
that coincides with BayesGreedy in the first n0 steps. Then all agents t ≥ n0 choose principal 1.

Thus, Principal 1 can use BayesGreedy, or any other Bayesian-monotone MAB algorithm that
coincides with BayesGreedy in the first few steps. The proof re-uses Lemmas 4.4 and 4.5, which
do not rely on fair tie-breaking.

4.3 HardMax with random agents
Consider the HardMax&Random response model, i.e., HardMax mixed with “random agents”. Infor-
mally, we find that a much better algorithm wins big. In more detail, a principal with asymptoti-
cally better BIR wins by a large margin: after a “learning phase” of constant duration, all agents
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choose this principal with maximal possible probability fresp(1). For example, a principal with
BIR(n) ≤ Õ(n−1/2) prevails over one with BIR(n) ≥ Ω(n−1/3).

To state this result, we need to express a property that alg1 eventually catches up and surpasses
alg2, even if initially it receives only a fraction of traffic. We assume that both algorithms run
indefinitely and do not depend on the time horizon T ; call such algorithms T -oblivious. In particular,
their BIR at a given step does not depend on T . Then this property can be formalized as follows:

(∀ϵ > 0) BIR1(ϵn) / BIR2(n)→ 0. (5)

In fact, a weaker version suffices: denoting ϵ0 = fresp(−1), for some constant n0 we have

(∀n ≥ n0) BIR1 ( 1/2 ϵ0 n ) / BIR2(n) < 1/2. (6)

If this holds, we say that alg1 BIR-dominates alg2 starting from (local) step n0.
We also need a mild technical assumption that BIR2(·) is not extremely small:

(∃m0 ∀n ≥ m0) BIR2(n) > 4 e−ϵ0 n/12. (7)

Theorem 4.8. Fix a HardMax&Random response function fresp. Suppose algorithms alg1, alg2
are Bayesian-monotone and T -oblivious, and (7) holds. If alg1 BIR-dominates alg2 starting from
step n0, then each agent t ≥ max(n0,m0) chooses principal 1 with probability fresp(1) = 1− ϵ0
(which is the largest possible probability for this response function).

To conclude that a (much) better algorithm prevails in equilibrium, we consider a version of
the competition game in which the principals are restricted to choosing from a given set of MAB
algorithms; the algorithms in this set are called feasible.

Corollary 4.9. Fix a HardMax&Random response function fresp with fair tie-breaking: fresp(0) =
1/2. Consider the competition game in which all feasible MAB algorithms are T -oblivious, Bayesian-
monotone, and satisfy (7) for some fixed m0. Suppose some feasible algorithm alg BIR-dominates
all other feasible algorithms, starting from some local step n0. Then, for any sufficiently large time
horizon T , alg is a weakly dominant strategy for each principal, and (alg, alg) is a unique mixed
Nash equilibrium.

This corollary is geared towards a fairly realistic scenario when the principals choose among
a small number of types of MAB algorithms (e.g., Epsilon-Greedy vs. Thompson Sampling),
rather than small tweaks within each type. We make no positive prediction when a few feasible
algorithms are good, but no one dominates the others. Next we show that such positive predictions
are essentially impossible.

Counterpoint: A little greedy goes a long way

Given any Bayesian-monotone MAB algorithm alg other than BayesGreedy, we design a modified
algorithm which “mixes in” some greedy choices (and consequently learns at a slower rate), yet
prevails over alg in the competition game. Thus, we have a counterpoint to “much better algorithms
win”: even under HardMax&Random, a slower-learning algorithm may lose in competition. A
similar counterpoint to Corollary 4.9 states that non-greedy algorithms cannot be chosen in a pure
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Nash equilibrium. This is consistent with Theorem 4.8, because the BIR-dominance condition
required therein does not hold here.

The modified algorithm, called the greedy modification of alg with mixing parameter p ∈ (0, 1),
is defined as follows. Suppose alg deviates from BayesGreedy starting from some (local) step n0.
The modified algorithm coincides with BayesGreedy for the first n0− 1 steps. In each step n ≥ n0,
alg is invoked with probability 1−p, and with the remaining probability p does the “greedy choice”:
chooses an action with the largest posterior mean reward given the current information collected by
alg. The data from the “greedy choice” steps are not recorded.9 This completes the specification.

We find that the greedy modification prevails in competition if p is small enough. We focus on
symmetric response functions: ones with f(x) + f(−x) = 1 for any x ∈ [0, 1].

Theorem 4.10. Consider a symmetric HardMax&Random response function fresp. Suppose alg1 is
Bayesian-monotone, and deviates from BayesGreedy starting from some step n0. Let alg2 be the
greedy modification of alg1 with mixing parameter p > 0 such that (1− ϵ0)(1− p) > ϵ0, where
ϵ0 = fresp(−1) is the baseline selection probability. Then each agent t ≥ n0 chooses principal 2
with probability 1− ϵ0 (which is the largest possible).

Moreover, the greedy modification preserves Bayesian-monotonicity:

Lemma 4.11. The greedy modification of any Bayesian-monotone algorithm is Bayesian-monotone,
for any mixing parameter.

Thus, the greedy modification is a pure strategy in the competition game restricted to Bayesian-
monotone MAB algorithms, and it is beneficial in competition. Consider a pure Nash equilibrium
of this game. If one principal chooses a non-greedy algorithm, then the opponent could guarantee
strictly more than half of the market share via the greedy deviation. This is a contradiction, because
the first principal can always guarantee exactly half of the market share by mimicking the opponent.
Therefore, both principals must choose BayesGreedy.

Corollary 4.12. Fix a symmetric HardMax&Random response function fresp. Consider the competi-
tion game in which algorithms are feasible if and only if they are Bayesian-monotone. Then:

(a) the only possible pure Nash equilibrium is (BayesGreedy, BayesGreedy).
(b) If BayesGreedy satisfies BIR(n) · nγ →∞ for some γ > 1/2, then there are no pure Nash
equilibria, for any sufficiently large time horizon T .

Let us clarify part (b) of the corollary. The stated precondition is a fairly mild form of inefficiency.
A more typical scenario for BayesGreedy is a learning failure, with positive-constant BIR in each
round. E.g., this happens when the Bayesian prior Pmean is independent across arms, and the prior on
each µa has a strictly positive density on [0, 1] (see Corollary 11.9 in Slivkins (2019)). (Even) if the
precondition holds, BayesGreedy is dominated by any Bayesian-monotone, T -oblivious algorithm
with BIR(n) = Õ(t−1/2). One such algorithm is Thompson Sampling (Sellke and Slivkins, 2021).
By Theorem 4.8, it would be a profitable deviation from the (BayesGreedy, BayesGreedy) profile
if the time horizon T is large enough.

9In other words: the algorithm proceeds as if the “greedy choice” steps have never happened. While it is usually
more efficient to consider all available data, this modification simplifies analysis.
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Remark 4.13. While Corollary 4.12 does not restrict mixed Nash equilibria, this equilibrium concept
appears somewhat dubious for the competition game. Indeed, the underlying premise for mixed
Nash equilibria is to allow each principal to respond to the competitor’s mixed strategy. However,
one could argue that the principal could instead respond to the competitor’s pure strategy directly,
because the latter is revealed via commitment.

Finally, let us argue how the greedy modification can degrade the algorithm in some precise
sense. Formulating this claim precisely is somewhat subtle, as per below. We also prove Lemma 4.11
as a by-product of this analysis.

Claim 4.14. Let alg1 be any Bayesian-monotone algorithm, and let alg2 be its greedy modification,
with an arbitrary mixing parameter p ∈ (0, 1). Let alggr be a hypothetical algorithm which at each
step n outputs the “Bayesian-greedy choice” based on the data collected by alg1 in the first n− 1
steps. Let BIRgr(n) be the BIR of this algorithm. Suppose there exists a convex, decreasing function
f : R+ → [0, 1] and parameter q ∈ (1− p, 1) such that for any sufficiently large step n it holds that

BIRgr(n) ≥ f(n) > BIR1(n/q). (8)

Then for any sufficiently large step n we have BIR1(n) > BIR2(n).

Proof. Let Mn be the number of times alg1 is invoked in the first n steps of alg2. Let reg2(n) =
n ·maxa µa − rew2(n) be the (frequentist) instantaneous regret of alg2. Then

E [ reg2(n) |Mn = m ] = (1− p) · BIR1(m) + p · BIRgr(m).

BIR2(n) = E [ (1− p) · BIR1(Mn) + p · BIRgr(Mn) ] . (9)

Using (8),(9) and Jensen’s inequality, for any q ∈ (1− p, 1) and any large enough step n we have

BIR2(n) ≥ E [ BIRgr(Mn) ] ≥ E [ f(Mn) ] ≥ f (E[Mn] ) > f(qn) > BIR1(n).

Lemma 4.11 follows from Eq. (9). Indeed, the lemma asserts that BIR2(n) is non-decreasing,
which follows from Eq. (9) because both alg1 and alggr are Bayesian-monotone. The latter follows
from the “informational monotonicity” of the “greedy step”: it can only get better with more
information, see Lemma B.1.

4.4 SoftMax response function
For the SoftMax model, we derive a “better algorithm wins” result under a much weaker version of
BIR-dominance. This is the most technical part of the paper.

We start with a formal definition of SoftMax:

Definition 4.15. A response function fresp is SoftMax if the following conditions hold:
• fresp(·) is bounded away from 0 and 1: fresp(·) ∈ [ϵ, 1− ϵ] for some ϵ ∈ (0, 1

2
),

• fair tie-breaking: fresp(0) = 1
2
.

• the response function fresp(·) is “smooth” around 0:

∃ constants δ0, c0, c′0 > 0 ∀x ∈ [−δ0, δ0] c0 ≤ f ′
resp(x) ≤ c′0. (10)
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Remark 4.16. This definition is fruitful when c0 and c′0 are close to 1
2
. Throughout, we assume that

alg1 is better than alg2, and obtain results parameterized by c0. By symmetry, one could assume
that alg2 is better than alg1, and obtain similar results in terms of c′0.

For the sake of intuition, let us derive a version of Theorem 4.8, with the same assumptions and
a similar proof. The conclusion is much weaker, though: we can only guarantee that each agent
t ≥ n0 chooses principal 1 with probability slightly larger than 1

2
. This is essentially unavoidable in

a typical case when both algorithms satisfy BIR(n)→ 0.

Theorem 4.17. Assume SoftMax response function. Suppose algorithms alg1, alg2 satisfy the
assumptions in Theorem 4.8. Then each agent t ≥ n0 chooses principal 1 with probability

Pr[it = 1] ≥ 1
2
+ c0

4
BIR2(t). (11)

To prove this theorem, we follow the steps in the proof of Theorem 4.8 to derive PMR1(t) −
PMR2(t) ≥ BIR2(t)/2− exp(−ϵ0 t/12). This is at least BIR2(t)/4 by (7). Then Eq. (11) follows by
the smoothness condition (10).

Let us relax the notion of BIR-dominance so that the constant multiplicative factors in (6),
namely ϵ0/2 and 1

2
, are replaced by constants that can be arbitrarily close to 1.

Definition 4.18. Let alg1, alg2 be T -oblivious MAB algorithms. Say that alg1 weakly BIR-
dominates alg2 if there are absolute constants β0, α0 ∈ (0, 1/2) and n0 ∈ N such that

(∀n ≥ n0)
BIR1((1− β0)n)

BIR2(n)
< 1− α0. (12)

Now we are ready to state the main result for SoftMax:

Theorem 4.19. Assume the SoftMax response function. Suppose algorithms alg1, alg2 are
Bayesian-monotone and T -oblivious, and alg1 weakly-BIR-dominates alg2. Posit mild technical
assumptions: BIR1(n)→ 0 and that BIR2 cannot be extremely small, namely:

(∃m0 ∀n ≥ m0) BIR2(n) ≥ 4
α0

exp
(
− 1

12
n min{ϵ0, 1/8}

)
. (13)

Then there exists some t0 such that each agent t ≥ t0 chooses principal 1 with probability

Pr[it = 1] ≥ 1
2
+ 1

4
c0 α0 BIR2(t). (14)

Proof Sketch. The main idea is that even though alg1 may have a slower rate of learning in the
beginning, it will gradually catch up and surpass alg2. We distinguish two phases. In the first
phase, alg1 receives a random agent with probability at least fresp(−1) = ϵ0 in each round. Since
BIR1 tends to 0, the difference in BIRs between the two algorithms is also diminishing. Due to the
SoftMax response function, alg1 attracts each agent with probability at least 1/2−O(β0) after a
sufficient number of rounds. Then the game enters the second phase: both algorithms receive agents
at a rate close to 1

2
, and the fractions of agents received by both algorithms — n1(t)/t and n2(t)/t —

also converge to 1
2
. At the end of the second phase and in each global round afterwards, the counts

n1(t) and n2(t) satisfy the weak BIR-dominance condition, in the sense that they both are larger
than n0 and n1(t) ≥ (1− β0) n2(t). At this point, alg1 actually has smaller BIR, which reflected in
the PMRs eventually. Accordingly, from then on alg1 attracts agents at a rate slightly larger than 1

2
.

We prove that the “bump” over 1
2

is at least on the order of BIR2(t).
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HardMax&Random

HardMax

Figure 2: The stylized inverted-U relationship in the “main story”.

It follows that a weakly-BIR-dominating algorithm prevails in equilibrium.

Corollary 4.20. Consider the competition game in which all feasible algorithms are Bayesian-
monotone, T -oblivious, and satisfy

∑n
m=1 BIR(m)→n ∞.10 Suppose some feasible algorithm alg

weakly-BIR-dominates all others. Then, for any sufficiently large time horizon T , alg is a weakly
dominant strategy for each principal, and (alg, alg) is a unique mixed Nash equilibrium.

4.5 Economic implications
We frame our contributions in terms of the relationship between competitiveness (as expressed by
the “hardness” of the response function fresp), and adoption of better algorithms.
Main story. Our main story concerns the finite competition game between the two principals where
one allowed algorithm alg is “better” than the others. We track whether and when alg is chosen in
an equilibrium. We vary competitiveness by changing the response function from HardMax (very
competitive environment) to HardMax&Random to SoftMax (less competition). Our conclusions
are as follows:
• Under HardMax, no innovation: BayesGreedy is chosen over alg.
• Under HardMax&Random, some innovation: alg is chosen as long as it BIR-dominates.
• Under SoftMax, more innovation: alg is chosen as long as it weakly-BIR-dominates.

These conclusions follow from Corollaries 4.3, 4.9 and 4.20, respectively. Recall that weak-BIR-
dominance is a weaker condition, so that a better algorithm is chosen in a broader range of scenarios.
We also consider the uniform choice between the principals, which entails the least amount of
competition and (when principals optimize market share) provides no incentives to innovate.11 Thus,
we have an inverted-U relationship, see Figure 2.
Secondary story. Let us zoom in on the symmetric HardMax&Random model. Competitiveness
within this model are controlled by the baseline probability ϵ0 = fresp(−1), which varies smoothly

10This is a very mild non-degeneracy condition, see Appendix A for background.
11However, if principals’ utility is aligned with agents’ welfare, then a monopolist principal is incentivized to choose

the best possible MAB algorithm (namely, to minimize cumulative Bayesian regret BReg(T )). Accordingly, monopoly
would result in better social welfare than competition, as the latter is likely to split the market and cause each principal
to learn more slowly. This is a well-known effect of economies of scale.
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Figure 3: The stylized inverted-U relationship from the “secondary story”

between the two extremes: HardMax (ϵ0 = 0, tough competition) and the uniform choice (ϵ0 = 1
2
,

no competition). Principals’ utility is the number of agents.
We consider the marginal utility of switching to a better algorithm. Suppose initially both

principals use some algorithm alg, and principal 1 ponders switching to another algorithm alg’
which BIR-dominates alg. What is the marginal utility ∆U of this switch?
• if ϵ0 = 0 then ∆U can be negative if alg is BayesGreedy.
• if ϵ0 is near 0 then only a small ∆U can be guaranteed, as it may take a long time for alg′ to

“catch up” with alg, and hence less time to reap the benefits.
• if ϵ0 is medium-range, then ∆U is large, as alg′ learns fast and gets most agents.
• if ϵ0 is near 1

2
, the algorithm matters less, so ∆U is small.

These findings can also be organized as an inverted-U relationship, see Figure 3.

4.6 Extensions
Our theoretical results can be extended beyond the basic model in Section 3.
Reward-dependent utility. Except for Corollary 4.20, our results allow a more general notion
of principal’s utility that can depend on both the market share and agents’ rewards. Namely, each
principal i collects Ui(rt) units of utility in each global round t when she is chosen (and 0 otherwise),
where Ui(·) is some fixed non-decreasing function with Ui(0) > 0.
Time-discounted utility. Theorem 4.2 and Corollary 4.3 holds under a more general model which
allows time-discounting: namely, the utility of each principal i in each global round t is Ui,t(rt) if
this principal is chosen, and 0 otherwise, where Ui,t(·) is an arbitrary non-decreasing function with
Ui,t(0) > 0.
Arbitrary reward distributions. Bernoulli rewards can be extended to arbitrary reward distribu-
tions. For each arm a ∈ A there is a parametric family ψa(·) of reward distributions, parameterized
by the mean reward. Whenever arm a is chosen, the reward is drawn independently from distribution
ψa(µa). The prior Pmean and the distributions (ψa(·) : a ∈ A) constitute the (full) Bayesian prior on
rewards.
Beliefs. Instead of knowing the principals’ algorithms (alg1, alg2), the Bayesian prior Pmean, and
the response function fresp, agents could have beliefs on these objects that need not be correct. If
agents have common “point beliefs” on these objects, then all our results carry over with respect to
these beliefs.
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Limited non-stationarity in fresp. Different agents can have different response functions. For
HardMax&Random, our results carry over if each agent t has a HardMax&Random response function
fresp with parameter ϵt ≥ ϵ0. For SoftMax, different agents can have different response functions
that satisfy Definition 4.15 with the same parameters.
MAB extensions. Our results carry over, with little or no modification of the proofs, to much more
general versions of MAB, as long as it satisfies the i.i.d. property. In each round, an algorithm can
see a context before choosing an action (as in contextual bandits) and/or additional feedback other
than the reward after the reward is chosen (as in, e.g., semi-bandits), as long as the contexts are
drawn from a fixed distribution, and the (reward, feedback) pair is drawn from a fixed distribution
that depends only on the context and the chosen action. The Bayesian prior P needs to be a more
complicated object, to make sure that PMR and BIR are well-defined. Mean rewards may also have a
known structure, such as Lipschitzness, convexity, or linearity; such structure can be incorporated
via P . All these extensions have been studied extensively in the literature on MAB, and account for
a substantial segment thereof; see (Slivkins, 2019; Lattimore and Szepesvári, 2020) for background.
BIR can depend on T . Many MAB algorithms are parameterized by the time horizon T , and their
regret bounds include polylog(T ). In particular, a typical regret bound for BIR is

BIR(n | T ) ≤ polylog(T ) · n−γ for some γ ∈ (0, 1
2
]. (15)

We write BIR(n | T ) to emphasize the dependence on T . Accordingly, BIR-dominance can be
redefined: there exists a number T0 and a function n0(T ) ∈ polylog(T ) such that

(∀T ≥ T0, n ≥ n0(T )) BIR1(ϵ0n/2 | T ) / BIR2(n | T ) < 1/2. (16)

Weak BIR-dominance extends similarly. Theorem 4.8 and 4.17 easily carry over.

5 Numerical simulations: the reputation-choice model
In this section we present our numerical simulations. As discussed in the Introduction, we focus
on the reputation-choice model, whereby each agent chooses the firm with a maximal reputation
score, modeled as a sliding window average of its rewards. While we experiment with various MAB
instances and parameter settings, we only report on selected, representative experiments. Additional
plots and tables are provided in Appendix E. Unless noted otherwise, our findings are based on and
consistent with all these experiments.

5.1 Experiment setup

Challenges. An “atomic experiment” is a competition game between a given pair of bandit
algorithms, in a given competition model, on a given multi-armed bandit problem (and each such
experiment is run many times to reduce variance). Accordingly, we have a three-dimensional space
of atomic experiments one needs to run and interpret: {pairs of algorithms} x {competition models}
x {bandit problems}, and we are looking for findings that are consistent across this entire space. It
is essential to keep each of the three dimensions small yet representative. In particular, we need
to capture a huge variety of bandit algorithms and bandit instances with only a few representative

21



examples. Further, we need a succinct and informative summarization of results within one atomic
experiment and across multiple experiments (e.g., see Table 1).
Competition model. All experiments use HardMax response function (without mentioning it),
except Section 5.5 where we use HardMax&Random agents. In some of our experiments, one firm
is the “incumbent” who enters the market before the other (“late entrant”), and therefore enjoys a
first-mover advantage. Formally, the incumbent enjoys additional X rounds of the “warm start”.
We treat X as an exogenous element of the model, and study the consequences for a fixed X .
MAB algorithms. In abstract terms, we posit three types of technology, from “low” to “medium” to
“high”. Concretely, we consider three essential classes of bandit algorithms: ones that never explicitly
explore (greedy algorithms), ones that explore without looking at the data (exploration-separating
algorithms), and ones where exploration gradually zooms in on the best arm (adaptive-exploration
algorithms). In the absence of competition, these classes are fairly well-understood: greedy
algorithms are terrible for a wide variety of problem instances, exploration-separated algorithms
learn at a reasonable but mediocre rate across all problem instances, and adaptive-exploration
algorithms are optimal in the worst case, and exponentially improve for “easy” problem instances
(see Appendix A).

We look for qualitative differences between these three classes under competition. We take
a representative algorithm from each class. Our pilot experiments indicate that our findings do
not change substantially if other representative algorithms are chosen. We use BayesGreedy

(BG) algorithm as in Section 4.1, BayesEpsilonGreedy (BEG) from the “exploration-separating”
algorithms, and ThompsonSampling (TS) from the “adaptive-exploration” algorithms.12 For ease
of comparison, all three algorithms are parameterized with the same “fake” Bayesian prior: namely,
the mean reward of each arm is drawn independently from a Beta(1, 1) distribution. Recall that
Beta priors with 0-1 rewards form a conjugate family, which allows for simple posterior updates.
MAB instances. We consider bandit problems with K = 10 arms and Bernoulli rewards. The mean
reward vector (µ(a) : a ∈ A) is initially drawn from some distribution, termed MAB instance. We
consider three MAB instances:

1. Needle-In-Haystack: one arm (the “needle”) is chosen uniformly at random. This arm has
mean reward .7, and the remaining ones have mean reward .5.

2. Uniform instance: the mean reward of each arm is drawn independently and uniformly from
[1/4, 3/4].

3. Heavy-Tail instance: the mean reward of each arm is drawn independently from Beta(.6, .6)
distribution (which is known to have substantial “tail probabilities”).

We argue that these MAB instances are (somewhat) representative. Consider the “gap” between
the best and the second-best arm, an essential parameter in the literature on MAB. The “gap” is
fixed in Needle-in-Haystack, spread over a wide spectrum of values under the Uniform instance,

12In each round t, ThompsonSampling computes a Bayesian posterior on µa for each arm a and draws an indepen-
dent sample µ̃a,t from this posterior; it chooses an arm which maximizes µ̃a,t.
BayesEpsilonGreedy proceeds as follows. In each round, with probability ϵ it explores by choosing an arm from

the full set of arms uniformly at random. With the remaining probability, it “exploits” by choosing an arm with maximal
posterior mean reward given the current data. We use ϵ = 5% throughout. Our pilot experiments show that choosing a
different ϵ does not qualitatively change the results.
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and is spread but focused on the large values under the Heavy-Tail instance. We also ran smaller
experiments with versions of these instances, and achieved similar qualitative results.
Simulation details. For each MAB instance we drawN = 1000 mean reward vectors independently
from the corresponding distribution. We use this same collection of mean reward vectors for all
experiments with this MAB instance. For each mean reward vector we draw a table of realized
rewards (realization table), and use this same table for all experiments on this mean reward vector.
This ensures that differences in algorithm performance are solely due to differences in the algorithms
in the different experimental settings.

More specifically, the realization table is a 0-1 matrix W with K columns which correspond
to arms, and T + Tmax rows, which correspond to rounds. Here Tmax is the maximal duration of
the “warm start” in our experiments, i.e., the maximal value of X + T0. For each arm a, each value
W (·, a) is drawn independently from Bernoulli distribution with expectation µ(a). Then in each
experiment, the reward of this arm in round t of the warm start is taken to be W (t, a), and its reward
in round t of the game is W (Tmax + t, a).

For the reputation scores, we fix the sliding window size M = 100. We found that lower values
induced too much random noise in the results, and increasing M further did not make a qualitative
difference. Unless otherwise noted, we used T = 2000.
Terminology. A particular instance of the competition game is specified by the MAB instance
and the game parameters, as described above. Recall that firms are interested in maximizing
their expected market share at the end of the game. Thus, for a given instance of the game and a
given firm, algorithm Alg1 (weakly) dominates algorithm Alg2 if Alg1 provides a larger (or equal)
expected final market share than Alg2, no matter that the opponent does. An algorithm is a (weakly)
dominant strategy for the firm if it (weakly) dominates the other two algorithms.

5.2 Performance in Isolation
We start with a pilot experiment in which we investigate each algorithm’s performance “in iso-
lation”: in a stand-alone MAB problem without competition. We focus on reputation scores
generated by each algorithm. We confirm that algorithms’ performance is ordered as we’d expect:
ThompsonSampling > BayesEpsilonGreedy > BayesGreedy for a sufficiently long time hori-
zon. For each algorithm and each MAB instance, we compute the mean reputation score at each
round, averaged over all mean reward vectors. We plot the mean reputation trajectory: how this
score evolves over time. We also plot the trajectory for instantaneous rewards (not averaged over the
previous time-periods), which provides a better view into algorithm’s performance at a given time.13

Figure 4 shows these trajectories for the Needle-in-Haystack instance; for other MAB instances the
plots are similar. We summarize this finding as follows:

Finding 1. The mean reputation trajectories and the instantaneous reward trajectories are arranged
as predicted by prior work: ThompsonSampling > BayesEpsilonGreedy > BayesGreedy for a
sufficiently long time horizon T .

13For “instantaneous reward” at a given time t, we report the average (over all mean reward vectors) of the mean
rewards at this time, instead of the average of the realized rewards, so as to decrease the noise.
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Figure 4: Mean reputation trajectory (left) and mean instantaneous reward trajectory (right) for Needle-in-Haystack.
The shaded area shows 95% confidence intervals.

We also use Figure 4 to choose a reasonable time-horizon for the subsequent experiments, as
T = 2000. The idea is, we want T to be large enough so that algorithms performance starts to
plateau, but small enough such that algorithms are still learning.

The mean reputation trajectory is probably the most natural way to represent an algorithm’s
performance on a given MAB instance. However, we found that the outcomes of the competition
game are better explained with a different “performance-in-isolation” statistic that is more directly
connected to the game. Consider the performance of two algorithms, Alg1 and Alg2, “in isolation”
on a particular MAB instance. The relative reputation of Alg1 (vs. Alg2) at a given time t is the
fraction of mean reward vectors/realization tables for which Alg1 has a higher reputation score than
Alg2. The intuition is that agent’s selection in our model depends only on the comparison between
the reputation scores.

This angle allows a more nuanced analysis of reputation costs vs. benefits under competition.
Figure 5 (left) shows the relative reputation trajectory for ThompsonSampling vs BayesGreedy
for the Uniform instance. The relative reputation is less than 1

2
in the early rounds, meaning that

BayesGreedy has a higher reputation score in a majority of the simulations, and more than 1
2

later
on. The reason is the exploration in ThompsonSampling leads to worse decisions initially, but
allows for better decisions later. The time period when relative reputation vs. BayesGreedy dips
below 1

2
can be seen as an explanation for the competitive disadvantage of exploration. Such period

also exists for the Heavy-Tail instance. However, it does not exist for the Needle-in-Haystack
instance, see Figure 5.14

Finding 2. Exploration can lead to relative reputation vs. BayesGreedy going below 1
2

for some
initial time period. This happens for some MAB instances but not for some others.

Definition 5.1. For a particular MAB algorithm, a time period when relative reputation vs.
BayesGreedy goes below 1

2
is called exploration disadvantage period. An MAB instance is

called exploration-disadvantaged if such period exists.
14We see two explanations for this: ThompsonSampling identifies the best arm faster for the Needle-in-Haystack

instance, and there are no “very bad” arms to make exploration expensive in the near term.
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Figure 5: Relative reputation trajectory for ThompsonSampling vs BayesGreedy, on Uniform instance (left) and
Needle-in-Haystack instance (right). Shaded area display 95% confidence intervals. The relative reputation at time
t is the fraction of mean reward vectors for which, at time t, ThompsonSampling has a higher reputation score than
BayesGreedy.

Note that Uniform and Heavy-tail instances are exploration-disadvantaged, but Needle-in-Haystack
instance is not.

5.3 Competition vs. Better Algorithms
Our main experiments concern the duopoly game defined in Section 3. As the “intensity of compe-
tition” varies from monopoly to “incumbent” to “simultaneous entry” to “late entrant”, we find a
stylized inverted-U relationship as in Section 4.5. We look for equilibria in the duopoly game, where
each firm’s choices are limited to BayesGreedy, BayesEpsilonGreedy and ThompsonSampling.
We do this for each “intensity level” and each MAB instance, and look for findings that are consistent
across MAB instances. We break ties towards less advanced algorithms, as they tend to have lower
adoption costs (Agarwal et al., 2017). BayesGreedy is then the dominant strategy under monopoly.
Simultaneous entry. The basic scenario is when both firms are competing from round 1. A crucial
distinction is whether an MAB instance is exploration-disadvantaged:

Finding 3. Under simultaneous entry:

(a) (BayesGreedy,BayesGreedy) is the unique pure-strategy Nash equilibrium for exploration-
disadvantaged MAB instances with a sufficiently small “warm start”.

(b) This is not necessarily the case for MAB instances that are not exploration-disadvantaged. In
particular, ThompsonSampling is a weakly dominant strategy for Needle-in-Haystack.

We investigate the firms’ market shares when they choose different algorithms (otherwise, by
symmetry both firms get half of the agents). We report the market shares for each instance in Table 1.
We find that BG is a weakly dominant strategy for the Heavy-Tail and Uniform instances, as long as T0
is sufficiently small. However, ThompsonSampling is a weakly dominant strategy for the Needle-
in-Haystack instance. We find that for a sufficiently small T0, BayesGreedy yields more than
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Heavy-Tail Needle-in-Haystack Uniform

T0 = 20 T0 = 250 T0 = 500 T0 = 20 T0 = 250 T0 = 500 T0 = 20 T0 = 250 T0 = 500

TS vs BG 0.31 ±0.03 0.72 ±0.02 0.75 ±0.02 0.68 ±0.03 0.62 ±0.03 0.65 ±0.03 0.44 ±0.03 0.52 ±0.02 0.58 ±0.02

TS vs BEG 0.3 ±0.03 0.89 ±0.01 0.9 ±0.01 0.6 ±0.03 0.52 ±0.03 0.55 ±0.02 0.41 ±0.03 0.47 ±0.02 0.55 ±0.02

BG vs BEG 0.63 ±0.03 0.6 ±0.02 0.56 ±0.03 0.42 ±0.03 0.41 ±0.03 0.39 ±0.02 0.5 ±0.03 0.46 ±0.02 0.45 ±0.02

Table 1: Simultaneous Entry, Market Share. Each cell describes a game between two algorithms, call them Alg1 vs.
Alg2, for a particular value of the warm start T0. Each cell contains the market share of Alg 1: the average (in bold) and
the 95% confidence band. The time horizon is T = 2000.

half the market against ThompsonSampling, but achieves similar market share vs. BayesGreedy
and BayesEpsilonGreedy. By our tie-breaking rule, (BayesGreedy,BayesGreedy) is the only
pure-strategy equilibrium.

We attribute the prevalence of BayesGreedy on exploration-disadvantaged MAB instances to its
prevalence on the initial “exploration disadvantage period”, as described in Section 5.2. Increasing
the warm start length T0 makes this period shorter: indeed, considering the relative reputation
trajectory in Figure 5 (left), increasing T0 effectively shifts the starting time point to the right. This
is why it helps BayesGreedy if T0 is small.
First-Mover. We turn our attention to the first-mover scenario. Recall that the incumbent firm
enters the market and serves as a monopolist until the entrant firm enters at round X . We make
X large enough, but still much smaller than the time horizon T . We find that the incumbent is
incentivized to choose ThompsonSampling, in a strong sense:

Finding 4. Under first-mover, ThompsonSampling is the dominant strategy for the incumbent. This
holds across all MAB instances, if X is large enough.

The simulation results for the Heavy-Tail MAB instance are reported in Table 2, for a particular
X = 200. We see that ThompsonSampling is a dominant strategy for the incumbent. Similar tables
for the other MAB instances and other values of X are reported in the supplement, with the same
conclusion.

TS BEG BG

TS 0.003±0.003 0.083±0.02 0.17±0.02

BEG 0.045±0.01 0.25±0.02 0.23±0.02

BG 0.12±0.02 0.36±0.03 0.3±0.02

Table 2: Market share of row player (entrant), 200 round head-start, Heavy-Tail Instance

BayesGreedy is a weakly dominant strategy for the entrant, for Heavy-Tail instance in Table 2
and the Uniform instance, but not for the Needle-in-Haystack instance. We attribute this finding to
exploration-disadvantaged property of these two MAB instance, for the same reasons as discussed
above.

Finding 5. Under first-mover, BayesGreedy is a weakly dominant strategy for the entrant for
exploration-disadvantaged MAB instances.
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Better algorithms

monopoly incumbent
simultaneous entry

entrant

Figure 6: A stylized “inverted-U relationship” between strength of competition and “level of innovation”.

Inverted-U relationship. We interpret our findings through the lens of the inverted-U relationship
between the “intensity of competition” and the “quality of technology”. The lowest level of compe-
tition is monopoly, when BayesGreedy wins out for the trivial reason of tie-breaking. The highest
levels are simultaneous entry and “late entrant”. We see that BayesGreedy is incentivized for
exploration-disadvantaged MAB instances. In fact, incentives for BayesGreedy get stronger when
the model transitions from simultaneous entry to “late entrant”.15 Finally, the middle level of com-
petition, “incumbent” in the first-mover regime creates strong incentives for ThompsonSampling.
In stylized form, this relationship is captured in Figure 6.16

Our intuition for why incumbency creates more incentives for exploration is as follows. During
the period in which the incumbent is the only firm in the market, reputation consequences of
exploration vanish. Instead, the firm wants to improve its performance as much as possible by the
time competition starts. Essentially, the firm only faces a classical explore-exploit trade-off, and
chooses algorithms that are best at optimizing this trade-off.
Death spiral effect. Further, we investigate the “death spiral” effect mentioned in the Introduction.
Restated in terms of our model, the effect is that one firm attracts new customers at a lower rate than
the other, and falls behind in terms of performance because the other firm has more customers to
learn from, and this gets worse over time until (almost) all new customers go to the other firm. With
this intuition in mind, we define effective end of game (EoG) for a particular mean reward vector and
realization table, as the last round t such that the agents at this and previous round choose different
firms. Indeed, the game, effectively, ends after this round. We interpret low EoG as a strong evidence
of the “death spiral” effect. Focusing on the simultaneous entry scenario, we specify the EoG values
in Table 3. We find that the EoG values are indeed small:

Finding 6. Under simultaneous entry, EoG values tend to be much smaller than T .

We also see that the EoG values tend to increase as the warm start T0 increases. We conjecture
this is because larger T0 tends to be more beneficial for a better algorithm (as it tends to follow a

15For the Heavy-Tail instance, BayesGreedy goes from a weakly dominant strategy to a strictly dominant. For the
Uniform instance, BayesGreedy goes from a Nash equilibrium strategy to a weakly dominant.

16We consider the monopoly scenario for comparison only. We just assume that a monopolist chooses the greedy
algorithm, because it is easier to deploy in practice. Implicitly, users have no “outside option”: the service provided is an
improvement over not having it (and therefore the monopolist is not incentivized to deploy better learning algorithms).
This is plausible with free ad-supported platforms such as Yelp or Google.
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better learning curve). Indeed, we know that the EoG in this scenario typically occurs when a better
algorithm loses, and helping it merely delays the loss.

Heavy-Tail Needle-in-Haystack Uniform

T0 = 20 T0 = 250 T0 = 500 T0 = 20 T0 = 250 T0 = 500 T0 = 20 T0 = 250 T0 = 500

TS vs BG 68 (0) 560 (8.5) 610 (86.5) 180 (30) 380 (0) 550 (6.5) 260 (0) 780 (676.5) 880 (897.5)

TS vs BEG 37 (0) 430 (0) 540 (105) 150 (10) 460 (25) 780 (705) 230 (0) 830 (772) 980 (1038)

BG vs BEG 340 (110) 640 (393) 670 (425) 410 (8.5) 760 (666) 740 (646) 530 (101) 990 (1058) 1000 (1059)

Table 3: Simultaneous Entry, EoG. Each cell describes a game between two algorithms, call them Alg1 vs. Alg2, for a
particular value of the warm start T0. Each cell specifies the “effective end of game” (EoG): the average and the median
(in brackets). The time horizon is T = 2000.

Welfare implications. We study the effects of competition on consumer welfare: the total reward
collected by the users over time. Rather than welfare directly, we find it more lucid to consider
market regret: T maxa µ(a) −

∑
t∈[T ] µ(at), where at is the arm chosen by agent t. This is a

standard performance measure in the literature on multi-armed bandits. Note that smaller regret
means higher welfare.

We assume that both firms play their respective equilibrium strategies. As discussed previously,
it is BayesGreedy in the monopoly scenario, and BayesGreedy for both firms for simultaneous
entry (Finding 3). For the first-mover scenario, it is ThompsonSampling for the incumbent (Finding
4) and BayesGreedy for the entrant (Finding 5).
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Figure 7: Smoothed welfare plots resulting from equilibrium strategies in the different market structures. Note that
welfare at t = 0 incorporates the regret incurred during the incumbent and warm start periods. The Thompson Sampling
trajectory displays the regret incurred by running Thompson Sampling in isolation on the given instances.

Figure 7 displays the market regret (averaged over multiple runs) under different levels of
competition. Consumers are better off in the first-mover case than in the simultaneous entry
case. Recall that under first-mover, the incumbent is incentivized to play ThompsonSampling.
Moreover, we find that the welfare is close to that of having a single firm for all agents and running
ThompsonSampling. We also observe that monopoly and simultaneous entry achieve similar
welfare.
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Figure 8: Average welfare and EoG as we increase the number of firms playing BayesGreedy

Finding 7. In equilibrium, consumer welfare is (a) highest under first-mover, (b) similar for
monopoly and simultaneous entry.

Finding 7(b) is interesting because, in equilibrium, both firms play BayesGreedy in both
settings, and one might conjecture that the welfare should increase with the number of firms playing
BayesGreedy. Indeed, one run of BayesGreedy may get stuck on a bad arm. However, two firms
independently playing BayesGreedy are less likely to get stuck simultaneously. If one firm gets
stuck and the other does not, then the latter should attract most agents, leading to improved welfare.

To study this phenomenon further, we go beyond the duopoly setting to more than two firms
playing BayesGreedy (and starting at the same time). Figure 8 reports the average welfare across
these simulations. Welfare not only does not get better, but is weakly worse as we increase the
number of firms.

Finding 8. When all firms deploy BayesGreedy, and start at the same time, welfare is weakly
decreasing as the number of firms increases.

We track the average EoG in each of the simulations and notice that it increases with the
number of firms. This observation also runs counter of the intuition that with more firms running
BayesGreedy, one of them is more likely to “get lucky” and take over the market (which would
cause EoG to decrease with the number of firms).

5.4 Data as a Barrier to Entry
In the first-mover regime, the incumbent can explore without incurring immediate reputational
costs, and build up a high reputation before the entrant appears. Thus, the early entry gives the
incumbent both a data advantage and a reputational advantage. We explore which of the two factors
is more significant. Our findings provide a quantitative insight into the role of the classic “first
mover advantage” phenomenon in the digital economy.

For a more succinct terminology, recall that the incumbent enjoys an extended warm start of
X + T0 rounds. Call the first X of these rounds the monopoly period (and the rest is the proper
“warm start”). The rounds when both firms are competing for customers are called competition
period.
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We run two additional experiments to isolate the effects of the two advantages mentioned
above. The data-advantage experiment focuses on the data advantage by, essentially, erasing the
reputation advantage. Namely, the data from the monopoly period is not used in the computation of
the incumbent’s reputation score. Likewise, the reputation-advantage experiment erases the data
advantage and focuses on the reputation advantage: namely, the incumbent’s algorithm ‘forgets’ the
data gathered during the monopoly period.

We find that either data or reputational advantage alone gives a substantial boost to the incumbent,
compared to simultaneous entry duopoly. The results for the Heavy-Tail instance are presented in
Table 4, in the same structure as Table 2. For the other two instances, the results are qualitatively
similar.

Reputation advantage (only) Data advantage (only)

TS BEG BG TS BEG BG

TS 0.021±0.009 0.16±0.02 0.21 ±0.02 0.0096±0.006 0.11±0.02 0.18±0.02

BEG 0.26±0.03 0.3±0.02 0.26±0.02 0.073±0.01 0.29±0.02 0.25±0.02

BG 0.34±0.03 0.4±0.03 0.33±0.02 0.15±0.02 0.39±0.03 0.33±0.02

Table 4: Data advantage vs. reputation advantage experiment, on Heavy-Tail MAB instance. Each cell describes the
duopoly game between the entrant’s algorithm (the row) and the incumbent’s algorithm (the column). The cell specifies
the entrant’s market share for the rounds in which hit was present: the average (in bold) and the 95% confidence interval.
NB: smaller average is better for the incumbent.

We can quantitatively define the data (resp., reputation) advantage as the incumbent’s market
share in the competition period in the data-advantage (resp., reputation advantage) experiment,
minus the said share under simultaneous entry duopoly, for the same pair of algorithms and the
same problem instance. In this language, our findings are as follows.

Finding 9. (a) Data advantage and reputation advantage alone are large, across all algorithms
and MAB instances. (b) The data advantage is larger than the reputation advantage when the
incumbent chooses ThompsonSampling. (c) The two advantages are similar in magnitude when
the incumbent chooses BayesEpsilonGreedy or BayesGreedy.

Our intuition for Finding 9(b) is as follows. Suppose the incumbent switches from BayesGreedy

to ThompsonSampling. This switch allows the incumbent to explore actions more efficiently –
collect better data in the same number of rounds – and therefore should benefit the data advantage.
However, the same switch increases the reputation cost of exploration in the short run, which could
weaken the reputation advantage.

5.5 Non-deterministic choice model (HardMax&Random)
Let us consider an extension in which the agents’ response function (1) is no longer deterministic.
We focus on HardMax&Random model, where each agent selects between the firms uniformly with
probability ϵ ∈ (0, 1), and takes the firm with the higher reputation score with the remaining
probability.
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Heavy-Tail (HMR with ϵ = .1) Heavy-Tail (HM)

TS vs BG TS vs BEG BG vs BEG TS vs BG TS vs BEG BG vs BEG

T = 2000
0.43 ± 0.02

Var: 0.15
0.44 ± 0.02

Var: 0.15
0.6 ± 0.02

Var: 0.1
0.29 ± 0.03

Var: 0.2
0.28 ± 0.03

Var: 0.19
0.63 ± 0.03

Var: 0.18

T = 5000
0.66 ± 0.01
Var: 0.056

0.59 ± 0.02
Var: 0.092

0.56 ± 0.02
Var: 0.098

0.29 ± 0.03
Var: 0.2

0.29 ± 0.03
Var: 0.2

0.62 ± 0.03
Var: 0.19

T = 10000
0.76 ± 0.01
Var: 0.026

0.67 ± 0.02
Var: 0.067

0.52 ± 0.02
Var: 0.11

0.3 ± 0.03
Var: 0.21

0.3 ± 0.03
Var: 0.2

0.6 ± 0.03
Var: 0.2

Table 5: HardMax (HM) and HardMax&Random (HMR) choice models on the Heavy-Tail MAB instance. Each cell
describes the market shares in a game between two algorithms, call them Alg1 vs. Alg2, at a particular value of t. Line
1 in the cell is the market share of Alg 1: the average (in bold) and the 95% confidence band. Line 2 specifies the
variance of the market shares across the simulations. The results reported here are with T0 = 20.

Uniform (HMR with ϵ = .1) Needle-In-Haystack (HMR with ϵ = .1)

TS vs BG TS vs BEG BG vs BEG TS vs BG TS vs BEG BG vs BEG

T = 2000
0.42 ± 0.02

Var: 0.13
0.45 ± 0.02

Var: 0.13
0.49 ± 0.02
Var: 0.093

0.55 ± 0.02
Var: 0.15

0.61 ± 0.02
Var: 0.13

0.46 ± 0.02
Var: 0.12

T = 5000
0.48 ± 0.02
Var: 0.089

0.53 ± 0.02
Var: 0.098

0.46 ± 0.02
Var: 0.072

0.56 ± 0.02
Var: 0.13

0.63 ± 0.02
Var: 0.12

0.43 ± 0.02
Var: 0.11

T = 10000
0.54 ± 0.01
Var: 0.055

0.6 ± 0.02
Var: 0.073

0.44 ± 0.02
Var: 0.064

0.58 ± 0.02
Var: 0.083

0.65 ± 0.02
Var: 0.096

0.4 ± 0.02
Var: 0.1

Table 6: HardMax&Random (HMR) choice model for Uniform and Needle-In-Haystack MAB instances.

One can view HardMax&Random as a version of “warm start”, where a firm receives some
customers without competition, but these customers are dispersed throughout the game. The
expected duration of this “dispersed warm start” is ϵT . If this quantity is large enough, we expect
better algorithms to reach their long-term performance and prevail in competition. We confirm this
intuition; we also find that this effect is negligible for smaller (but relevant) values of ϵ or T .

Finding 10. ThompsonSampling is weakly dominant under HardMax&Random, if and only if ϵT is
sufficiently large. Moreover, HardMax&Random leads to lower variance in market share, compared
to HardMax.

Table 5 shows the average market shares under HardMax vs HardMax&Random. In contrast to
what happens under HardMax, TS becomes weakly dominant under HardMax&Random, as T gets
sufficiently large. These findings hold across all problem instances, see Table 6 (with the same
semantics as in Table 5).

However, it takes a significant amount of randomness and a relatively large time horizon for this
effect to take place. Even with T = 10000 and ϵ = 0.1 we see that BEG still outperforms BG on the
Heavy-Tail MAB instance as well as that TS only starts to become weakly dominant at T = 10000
for the Uniform MAB instance.
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5.6 Performance in Isolation, Revisited
We saw in Section 5.3 that mean reputation trajectories do not suffice to explain the outcomes under
competition. Let us provide more evidence and intuition for this.

Mean reputation trajectories are so natural that one is tempted to conjecture that they determine
the outcomes under competition. More specifically:

Conjecture 5.2. If one algorithm’s mean reputation trajectory lies above another, perhaps after
some initial time interval (e.g., as in Figure 4), then the first algorithm prevails under competition,
for a sufficiently large warm start T0.

However, we find a more nuanced picture. For example, in Figure 1 we see that BayesGreedy
attains a larger market share than BayesEpsilonGreedy even for large warm starts. We find that
this also holds for K = 3 arms and longer time horizons, see the supplement for more details. We
conclude that Conjecture 5.2 is false:
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Figure 9: Needle-in-Haystack: reputation scores at t = 500 (left), reputation difference ThompsonSampling −
BayesGreedy (right). Both are smoothed using a kernel density estimate.

Finding 11. Mean reputation trajectories do not explain the outcomes under competition.

To see what could go wrong with Conjecture 5.2, consider how an algorithm’s reputation score
is distributed at a particular time. That is, consider the empirical distribution of this score over
different mean reward vectors.17 For concreteness, consider the Needle-in-Haystack instance at
time t = 500, plotted in Figure 9 (left). (The other MAB instances lead to a similar intuition.)

We see that the “naive” algorithms BayesGreedy and BayesEpsilonGreedy have a bi-modal
reputation distribution, whereas ThompsonSampling does not. The reason is that for this MAB
instance, BayesGreedy either finds the best arm and sticks to it, or gets stuck on the bad arms. In
the former case BayesGreedy does slightly better than ThompsonSampling, and in the latter case
it does substantially worse. However, the mean reputation trajectory fails to capture this complexity
since it takes average over different mean reward vectors. This is inadequate for explaining the

17Recall that each mean reward vector in our experimental setup comes with a separate realization table.
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outcome of the duopoly game, given that the latter is determined by a comparison between the
firm’s reputation scores.

To further this intuition, consider the difference in reputation scores (reputation difference)
between ThompsonSampling and BayesGreedy on a particular mean reward vector. Let’s plot the
empirical distribution of the reputation difference (over the mean reward vectors) at a particular time
point. Figure 9 (right) shows such plots for several time points. We observe that the distribution
is skewed to the right, precisely due to the fact that BayesGreedy either does slightly better than
ThompsonSampling or does substantially worse. So, the mean is not a good measure of the central
tendency of this distribution.

6 Conclusions
We study the tension between exploration and competition. We consider a stylized duopoly model
in which two firms face the same multi-armed bandit problem and compete for a stream of users.
A firm makes progress on its learning problem only if it attracts users. We find that firms are
incentivized to adopt a “greedy algorithm” which does no purposeful exploration and leads to
welfare losses for users. We then consider two relaxations of competition: we soften users’ decision
rule and give one firm a first-mover advantage. Both relaxations induce firms to adopt “better”
bandit algorithms, which benefits user welfare.

Our results have two economic interpretations. The first is that they can be framed in terms of
the classic inverted-U relationship between innovation and competition, where innovation refers
to the adoption of better bandit algorithms. Unlike other models in the literature, what prevents
innovation is not its direct costs, but the short-term reputation consequences of exploration. The
second interpretation concerns the role of data in the digital economy. We find that even a small
initial disparity in data or reputation gets amplified under competition to a very substantial difference
in the eventual market share. Thus, we endogenously obtain “network effects” without explicitly
baking them into the model, and elucidate the role of data as a barrier to entry.

With this paper as a departure point, there are several exciting directions to explore. First, when
the firms can set prices, they may be able to compensate early users for exploration, and potentially
prevent the “death spiral” effects. (Our paper zeroes in on competition between free, ad-supported
platforms that primarily compete on quality.) Second, horizontally differentiated user preferences
may help explain how competition may encourage specialization, i.e., how the firms may learn to
specialize under competition. Third, while we focus on a stationary world, another well-motivated
regime is “continuous learning”, when exploration continuously counteracts change. The economic
story would be about competition between relatively mature firms.18
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A Background for non-specialists:
multi-armed bandits

We present self-contained background on multi-armed bandits (MAB), to make the paper accessible
to researchers who are not experts on MAB. More details can be found in books (Bubeck and
Cesa-Bianchi, 2012; Slivkins, 2019; Lattimore and Szepesvári, 2020).

We focus on three algorithm classes, as in Section 5:

• Greedy algorithms that strive to maximize the reward for the next round given the available
information. Thus, they always “exploit” and never explicitly “explore”.

• Exploration-separating algorithms that separate exploration and exploitation: essentially,
each round is dedicated to one and completely ignores the other.

• Adaptive-exploration algorithms that combine exploration and exploitation, and gradually
sway the exploration choices towards more promising alternatives.

Below we discuss which algorithms are better than others, and what does it mean for one bandit
algorithm to be better than another. This is a rather subtle issue, because some algorithms may be
better for some problem instances and/or time intervals, and worse for some others. In particular,
“better” algorithms are better in the long run, but could be worse initially.

While we list precise upper and lower bounds on the regret rates, the main goal is to illustrate
how the three algorithm classes are separated from one another; the exact results are not essential
for this paper. For ease of presentation, we use standard asymptotic notation from computer science:
O(f(t)) and Ω(f(t)) means at most (resp., at least) f(n), up to constant factors, starting from large
enough t. Likewise, Õ(f(t)) notation suppresses the polylog(t) factors.
Fundamentals. We are concerned with the following problem. There are T rounds and K arms to
choose from. In each round t ∈ [T ], the algorithm chooses an arm and receives a reward rt ∈ [0, 1]
for this arm, drawn from a fixed but unknown distribution.19 The algorithm’s goal is to maximize
the total reward.

A standard performance measure is regret, defined as the difference in the total expected reward
between the algorithm and the best arm. In a formula, regret is T ·maxarms a µa − E

[∑
t∈[T ] rt

]
,

where µa is the mean reward of arm a. Normalized by the best arm, regret allows to compare
algorithms across different problem instances. The primary concern is the asymptotic growth rate
of regret as a function of T .

The three classes of algorithms perform very differently in terms of regret: adaptive-exploration
algorithms are by far the best, greedy algorithms are by far the worst, and exploration-separating
ones are in the middle. Adaptive-exploration algorithms achieve optimal regret rates: Õ(

√
KT )

for all problem instances, and simultaneously a vastly improved regret rate of O(K
∆
log T ) for all

problem instances with gap ≥ ∆ (“easy” instances), without knowing the ∆ in advance (Lai and
Robbins, 1985; Auer et al., 2002a,b).20 Exploration-separating algorithms can only achieve regret
Õ(T 2/3) across all problem instances. They can achieve the “gap-dependent” regret rate stated

19All “negative” results (i.e., lower bounds on regret) assume reward distributions with constant variance.
20The gap is the difference in mean reward between the best arm and the second-best arm.
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above, but only if they know the ∆ in advance, and with terrible regret Ω(∆T ) for some other
problem instances (Babaioff et al., 2014). Finally, the greedy algorithm is terrible on a wide variety
of problem instances, in the sense that with constant probability it fails to try the best arm even
once, and therefore suffers regret Ω(T ) (see Chapter 11.2 in Slivkins, 2019).

The optimal regret rates are achieved by several adaptive-exploration algorithms, of which
the most known are Thompson Sampling (Thompson, 1933; Russo et al., 2018),21 UCB1 (Auer
et al., 2002a), and Successive Elimination (Even-Dar et al., 2006).22 These algorithms are very
simple to describe. Focus on one round and consider the posterior distribution and/or the confidence
interval on each arm’s mean reward. Thompson Sampling draws a sample (“score”) from each
arm’s posterior distribution, and picks an arm with the largest score. UCB1 picks an arm with the
largest upper confidence bound. Successive Elimination eliminates an arm once it is worse than
some other arm with high confidence, and chooses uniformly among the remaining arms.

Exploration-separating algorithms completely separate exploration and exploitation. Ahead of
time, each round is either selected for exploration, in which case the distribution over arms does not
depend on the observed data, or it is assigned to exploitation, in which case the data from this round
is discarded. The simplest approach, called Explore-First, explores uniformly for a predetermined
number of rounds, then chooses one arm for “exploitation” and uses it from then on. A more
refined approach, called Epsilon-Greedy, explores uniformly in each round with a predetermined
probability, and “exploits” with the remaining probability. Both algorithms, and the associated
Õ(T 2/3) regret bounds, have been “folklore knowledge” for decades. The general definition and
lower bounds trace back to Babaioff et al. (2014).23

Advanced aspects. Switching from “greedy” to “exploration-separating” to “adaptive-exploration”
algorithms involves substantial adoption costs in infrastructure and personnel training (Agarwal
et al., 2017). Inserting exploration into a complex decision-making pipeline necessitates a substantial
awareness of the technology and a certain change in mindset, as well as an infrastructure to collect
and analyze the data. Adaptive exploration requires the said infrastructure to propagate the data
analysis back to the “front-end” where the decisions are made, and do it on a sufficiently fast and
regular cadence. Framing the problem (e.g., choosing modeling assumptions and action features)
and debugging the machine learning algorithms tend to be quite subtle, too.

The lower bounds mentioned above are fairly typical: while they are usually (and most cleanly)
presented as worst-case, the actually hold for a wide variety of problem instances. The Ω(

√
T )

lower bound from Auer et al. (2002b) can be extended to hold for most problem instances, in the
following sense: for each instance I there exists a “decoy instance” I ′ such that any algorithm
incurs regret Ω(

√
T ) on at least one of them. The “gap-dependent” lower bound of Ω(K

∆
log T ) in

fact holds for all problem instances and all algorithms that are not terrible on the large-gap instances
(Lai and Robbins, 1985). The Ω(T 2/3) lower bound for exploration-separating algorithms in fact
applies to all problem instances, as long as the algorithm achieves Õ(T 2/3) regret rate in the worst
case (Babaioff et al., 2014).24

21While Thompson Sampling dates back to 1933 and is probably the best-known bandit algorithm, its regret has not
been understood until recently (Agrawal and Goyal, 2012; Kaufmann et al., 2012; Agrawal and Goyal, 2013).

22A substantial follow-up work on more “refined” regret rates is not as relevant to this paper.
23Babaioff et al. (2014) consider a closely related, but technically different setting, which can be easily “translated”

into ours (either as a corollary or as another application of the same proof technique).
24Moreover, there is a tradeoff between the worst-case upper bound on the regret rate and a lower bound that applies

for all problem instances (Theorem 4.3 in Babaioff et al., 2014).
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Some MAB algorithms, e.g., Thompson Sampling, are Bayesian: they input a prior on mean
rewards, and attain strong Bayesian guarantees (in expectation over the prior) when the prior is
correct. Such algorithms can also be initialized with some simple ‘fake’ priors; in fact, this is how
Thompson Sampling can be made to satisfy the optimal regret bounds.

The intuition on (the separation between) the three algorithm classes applies more generally,
far beyond the basic MAB model discussed above. In particular, all algorithms that we explicitly
mentioned are in fact general algorithmic techniques that are known to extend to a variety of more
general MAB scenarios, typically with a similarly stark separation in regret bounds.

The greedy algorithm can perform well sometimes in a more general model of contextual
bandits, where auxiliary payoff-relevant signals, a.k.a. contexts, are observed before each round.
This phenomenon has been observed in practice (Bietti et al., 2018), and in theory (Kannan et al.,
2018; Bastani et al., 2021; Raghavan et al., 2018) under (very) substantial assumptions. The
prevalent intuition is that the diversity of contexts can — under some conditions and to a limited
extent — substitute for explicit exploration.
Instantaneous regret. Cumulative performance measures such as regret are not quite appropriate
for our setting, as we need to characterize interactions in particular rounds. Instead, our theoretical
results focus on Bayesian instantaneous regret (BIR), as defined in Section 4.1. Recall that we posit
a Bayesian prior on the mean reward vectors. In the notation of this appendix, the BIR is simply:

BIR(t) := E
prior

[
max
arms a

µa − rt
]
.

Note that Bayesian regret (i.e., regret in expectation over the prior) is precisely

BReg(T ) := E
prior

[
T ·max

arms a
µa −

T∑
t=1

rt

]
=

T∑
t=1

BIR(t). (17)

We are primarily interested in how fast BIR decreases with t, treating K as a constant.
The three classes are well-separated in terms of BIR, much like they are in terms of regret.

• BayesGreedy has at least a constant BIR for many reasonable priors (where the constant can
depend on K and the prior, but not on t). The reason / proof is the same as for regret.

• Exploration-separating algorithms can achieve BIR(t) = Õ
(
t−1/3

)
for all priors, e.g., by

using Epsilon-Greedy algorithm with exploration probability ϵt = t−1/3 in each round t. In
the typical scenario when BReg(t) ≥ Ω(t2/3), the BIR rate of t−1/3 cannot be improved by
(17), in the following sense: if BIR(t) = Õ ( t−γ ) for all t, then γ ≥ 1/3.

• Adaptive-exploration algorithms can have an even better regret rate: BIR(t) = Õ
(
t−1/2

)
.

This holds for Successive Elimination (Even-Dar et al., 2006) and for Thompson Sampling
(Sellke and Slivkins, 2021).25 Any optimal MAB algorithm enjoys this regret rate “on average”
by (17), since BReg(T ) ≤ Õ(

√
T ). In particular, if such algorithm satisfies BIR(t) = Õ ( t−γ )

for all rounds t and some constant γ, then γ ≤ 1/2.

This theoretical intuition is supported by our numerical simulations: see Figure 5 and Appendix E.1.

25However, such result is not known for UCB1 algorithm, to the best of our knowledge.
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B Monotone MAB algorithms
This appendix proves Bayesian-monotonicity of BayesGreedy and BayesEpsilonGreedy. (The
former is needed in Section 4, the latter merely adds motivation for our theoretical story.) Recall
that an algorithm is called Bayesian-monotone if its Bayesian-expected reward is non-decreasing
in time. Note that ThompsonSampling is known to be Bayesian-monotone if the prior Pmean is
independent across arms (Sellke and Slivkins, 2021).

We consider Bayesian MAB with Bernoulli rewards. There are T rounds and K arms. In each
round t ∈ [T ], the algorithm chooses an arm at ∈ A and receives a reward rt ∈ {0, 1} for this arm,
drawn from a fixed but unknown distribution. The set of all arms is A; mean reward of arm a is
denoted µa. The mean reward vector µ = (µa : a ∈ A) is drawn from a common Bayesian prior
Pmean. We let rew(t) = µat denote the instantaneous mean reward of the algorithm.
Monotonicity for the greedy algorithm. We state the monotonicity-in-information result for
the “Bayesian-greedy step”: informally, exploitation can only get better with more data. We
invoke this result directly in Section 4, and use it to derive monotonicity of BayesGreedy and
BayesEpsilonGreedy.

A formal statement needs some scaffolding. The n-step history is the random sequence Hn =
( (at, rt) : t ∈ [n] ). Realizations ofHn are called realized histories. LetHn be the set of all possible
values of Hn. The Bayesian-greedy step given an n-step history h ∈ Hn is defined as

BG(h) := argmax
a∈A

E [µa | Hn = h ] , ties broken arbitrarily.

(However, recall that such ties are ruled out by Assumption 3.) Now, the result is as follows:

Lemma B.1 (Mansour et al. (2022)). Let h, h′ be two realized histories such that h is a prefix of h′.
Then

E
[
µBG(h)

]
≤ E

[
µBG(h′)

]
.

Corollary B.2. BayesGreedy is Bayesian-monotone. Moreover, E[rew(n)] strictly increases in
each time step n with Pr[an ̸= an+1] > 0.

Proof. Bayesian-monotonicity follows directly. The “strictly increases” statement holds because
the arm chosen in a given round has a strictly largest Bayesian-expected reward for that round.

Monotonicity for Epsilon-Greedy. Lemma B.1 immediately implies monotonicity of BayesEpsilonGreedy,
for a generic choice of exploration probabilities. Recall that in each round t, BayesEpsilonGreedy
algorithm explores uniformly with a predetermined probability ϵt, and “exploits” with the remaining
probability using the Bayesian-greedy step: at = BG(current data).

Corollary B.3. BayesEpsilonGreedy is Bayesian-monotone whenever probabilities ϵt are non-
increasing.
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C Non-degeneracy via a random perturbation
We provide two examples when Assumption (3) holds almost surely under a small random perturba-
tion of the prior. We posit Bernoulli rewards, and assume that the prior Pmean is independent across
arms.
Beta priors. Suppose the mean reward µa for each arm a is drawn from some Beta distribution
Beta(αa, βa). Given any history H that contains ha number of heads and ta number of tails from
arm a, the posterior mean reward is E[µa | H] = αa+ha

αa+ha+βa+ta
. Therefore, perturbing the parameters

αa and βa independently with any continuous noise will induce a prior with property (3) with
probability 1.
A prior with a finite support. Consider the probability vector in the prior for arm a:

p⃗a = ( Pr[µa = ν] : ν ∈ support(µa) ) .

We apply a small random perturbation independently to each such vector:

p⃗a ← p⃗a + q⃗a, where q⃗a ∼ Na. (18)

Here Na is the noise distribution for arm a: a distribution over real-valued, zero-sum vectors of
dimension da = |support(µa)|. We need the noise distribution to satisfy the following property:

∀x ∈ [−1, 1]da \ {0} Pr
q∼Na

[x · (p⃗a + q) ̸= 0] = 1. (19)

Theorem C.1. Consider an instance of MAB with 0-1 rewards. Assume that the prior Pmean is
independent across arms, and each mean reward µa has a finite support that does not include 0 or
1. Assume that noise distributions Na satisfy property (19). If random perturbation (18) is applied
independently to each arm a, then Eq. (3) holds almost surely for each history h.

Remark C.2. As a generic example of a noise distribution which satisfies Property (19), consider
the uniform distribution N over the bounded convex set Q =

{
q ∈ Rda | q · 1⃗ = 0 and ∥q∥2 ≤ ϵ

}
,

where 1⃗ denotes the all-1 vector. If x = a1⃗ for some non-zero value of a, then (19) holds because
x · (p + q) = x · p = a ̸= 0. Otherwise, denote p = p⃗a and observe that x · (p + q) = 0 only if
x · q = c ≜ x · (−p). Since x ̸= 1⃗, the intersection Q ∩ {x · q = c} either is empty or has measure
0 in Q, which implies Prq [x · (p+ q) ̸= 0] = 1.

To prove Theorem C.1, it suffices to focus on two arms, and perturb one. Since realized rewards
have finite support, there are only finitely many possible histories. So, it suffices to focus on a fixed
history h.

Lemma C.3. Consider an instance of MAB with Bernoulli rewards. Assume that the prior Pmean

is independent across arms, and that support(µ1) is finite and does not include 0 or 1. Suppose
random perturbation (18) is applied to arm 1, with noise distribution N1 that satisfies (19). Then
E[µ1 | h] ̸= E[µ2 | h] almost surely for any fixed history h.

Proof. Note that E[µa | h] does not depend on the algorithm which produced this history. Therefore,
for the sake of the analysis, we can assume w.l.o.g. that this history has been generated by a particular
algorithm, as long as this algorithm can can produce this history with non-zero probability. Let
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us consider the algorithm that deterministically chooses same actions as h. Let S = support(µ1).
Then:

E[µ1 | h] =
∑

ν∈S ν · Pr[µ1 = ν | h]
=

∑
ν∈S ν · Pr[h | µ1 = ν] · Pr[µ1 = ν] / Pr[h],

Pr[h] =
∑

ν∈S Pr[h | µ1 = ν] · Pr[µ1 = ν].

Therefore, E[µ1 | h] = E[µ2 | h] if and only if∑
ν∈S(ν − C) · Pr[h | µ1 = ν] · Pr[µ1 = ν] = 0, where C = E[µ2 | h].

Since E[µ2 | h] and Pr[h | µ1 = ν] do not depend on the probability vector p⃗1, we conclude that

E[µ1 | h] = E[µ2 | h] ⇔ x · p⃗1 = 0,

where vector
x := ( (ν − C) · Pr[h | µ1 = ν] : ν ∈ S ) ∈ [−1, 1]d1

does not depend on p⃗1.
Thus, it suffices to prove that x · p⃗1 ̸= 0 almost surely under the perturbation. In a formula:

Pr
q∼N1

[x · (p⃗1 + q) ̸= 0] = 1 (20)

Note that Pr[h | µ1 = ν] > 0 for all ν ∈ S, because 0, 1 ̸∈ S. It follows that at most one
coordinate of x can be zero. So (20) follows from property (19).

D Full proofs for Section 4

Some notation. Without loss of generality, we label actions as A = [K] and sort them according to
their prior mean rewards, so that E[µ1] > E[µ2] > . . . > E[µK ].

Fix principal i ∈ {1, 2} and (local) step n. The arm chosen by algorithm algi at this step is
denoted ai,n, and the corresponding BIR is denoted BIRi(n). History of algi up to this step is
denoted Hi,n.

Fix agent t. Recall that ni(t) denotes the number of global rounds before t in which principal i
is chosen. Let Ni,t denote the distribution of ni(t).

Write PMR(a | E) = E[µa | E] for posterior mean reward of action a given event E.
Chernoff Bounds. We use an elementary concentration inequality known as Chernoff Bounds, in a
formulation from Mitzenmacher and Upfal (2005).

Theorem D.1 (Chernoff Bounds). Consider n i.i.d. random variables X1 . . . Xn with values in
[0, 1]. Let X = 1

n

∑n
i=1Xi be their average, and let ν = E[X]. Then:

min ( Pr[X − ν > δν], Pr[ν −X > δν] ) < e−νnδ2/3 for any δ ∈ (0, 1).
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D.1 Main result on HardMax: Proof of Theorem 4.2
Proof of Lemma 4.4. Since the two algorithms coincide on the first n0 − 1 steps, it follows by
symmetry that histories H1,n0 and H2,n0 have the same distribution. We use a coupling argument:
w.l.o.g., we assume the two histories coincide, H1,n0 = H2,n0 = H .

At local step n0, BayesGreedy chooses an action a1,n0 = a1,n0(H) which maximizes the
posterior mean reward given history H: for any realized history h ∈ support(H) and any action
a ∈ A

PMR(a1,n0 | H = h) ≥ PMR(a | H = h). (21)

By assumption (3), it follows that

PMR(a1,n0 | H = h) > PMR(a | H = h) for any h ∈ support(H) and a ̸= a1,n0(h). (22)

Since the two algorithms deviate at step n0, there is a set S ⊂ support(H) of step-n0 histories
such that Pr[S] > 0 and any history h ∈ S satisfies Pr[a2,n0 ̸= a1,n0 | H = h] > 0. Combining this
with (22),

PMR(a1,n0 | H = h) > E
[
µa2,n0

| H = h
]

for each history h ∈ S. (23)

Using (21) and (23) and integrating over realized histories h, we obtain E[rew1(n0)] > E[rew2(n0)].

Proof of Lemma 4.5. Let us use induction on round t ≥ t0, with the base case t = t0. Let
N = N1,t0 be the agents’ posterior distribution for n1,t0 , the number of global rounds before t0
in which principal 1 is chosen. By induction, all agents from t0 to t − 1 chose principal 1, so
PMR2(t0) = PMR2(t). Therefore,

PMR1(t) = E
n∼N

[rew1(n+ 1 + t− t0)] ≥ E
n∼N

[rew1(n+ 1)] = PMR1(t0) > PMR2(t0) = PMR2(t),

where the first inequality holds because alg1 is Bayesian-monotone, and the second one is the base
case.

Proof of Theorem 4.2. Since the two algorithms coincide on the first n0 − 1 steps, it follows
by symmetry that E[rew1(n)] = E[rew2(n)] for any n < n0. By Lemma 4.4, it holds that
E[rew1(n0)] > E[rew2(n0)].

Recall that ni(t) is the number of global rounds s < t in which principal i is chosen, and Ni,t

is the agents’ posterior distribution for this quantity. By symmetry, each agent t < n0 chooses a
principal uniformly at random. It follows that N1,n0 = N2,n0 (denote both distributions by N for
brevity), and N (n0 − 1) > 0. Therefore:

PMR1(n0) = E
n∼N

[rew1(n+ 1)] =

n0−1∑
n=0

N (n) · E[rew1(n+ 1)]

> N (n0 − 1) · E[rew2(n0)] +

n0−2∑
n=0

N (n) · E[rew2(n+ 1)]

= E
n∼N

[rew2(n+ 1)] = PMR2(n0) (24)

So, agent n0 chooses principal 1. By Lemma 4.5 (noting that BayesGreedy is Bayesian-monotone),
all subsequent agents choose principal 1, too.
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D.2 HardMax with biased tie-breaking: Proof of Theorem 4.7
The proof re-uses Lemmas 4.4 and 4.5, which do not rely on fair tie-breaking.

Recall that it is the principal chosen in a given global round t. Because of the biased tie-breaking,

if PMR1(t) ≥ PMR2(t) then Pr[it = 1] > 1
2
. (25)

Let m0 be the first step when alg2 deviates from BayesGreedy, or BayesGreedy deviates from
StaticGreedy, whichever comes sooner. Then alg2, BayesGreedy and StaticGreedy coincide
on the first m0 − 1 steps. Moreover, m0 ≤ n0 (since BayesGreedy deviates from StaticGreedy

at step n0), so alg1 coincides with BayesGreedy on the first m0 steps.
So, E[rew1(n)] = E[rew2(n)] for each step n < m0, because alg1 and alg2 coincide on the

first m0 − 1 steps. Moreover, if alg2 deviates from BayesGreedy at step m0 then E[rew1(m0)] >
E[rew2(m0)] by Lemma 4.4; else, we trivially have rew1(m0) = rew2(m0). To summarize:

E[rew1(n)] ≥ E[rew2(n)] for all steps n ≤ m0. (26)

We claim that Pr[it = 1] > 1
2

for all global rounds t ≤ m0. We prove this claim using induction
on t. The base case t = 1 holds by (25) and the fact that in step 1, BayesGreedy chooses the arm
with the highest prior mean reward. For the induction step, we assume that Pr[it = 1] > 1

2
for all

global rounds t < t0, for some t0 ≤ m0. It follows that distribution N1,t0 stochastically dominates
distribution N2,t0 .26 Observe that

PMR1(t0) = E
n∼N1,t0

[rew1(n+ 1)] ≥ E
n∼N2,t0

[rew2(n+ 1)] = PMR2(t0). (27)

So the induction step follows by (25). Claim proved.
Now let us focus on global round m0, and denote Ni = Ni,m0 . By the above claim,

N1 stochastically dominates N2, and moreover Ni(m0 − 1) > Ni(m0 − 1). (28)

By definition of m0, either (i) alg2 deviates from BayesGreedy starting from local step
m0, which implies rew1(m0) > rew2(m0) by Lemma 4.4, or (ii) BayesGreedy deviates from
StaticGreedy starting from local step m0, which implies E[rew1(m0)] > E[rew1(m0 − 1)] by
Lemma B.2. In both cases, using (26) and (28), it follows that the inequality in (27) is strict for
t0 = m0.

Therefore, agent m0 chooses principal 1, and by Lemma 4.5 so do all subsequent agents.

D.3 The main result for HardMax&Random: Proof of Theorem 4.8
Without loss of generality, assume m0 = n0. Consider global round t ≥ n0. Recall that each agent
chooses principal 1 with probability at least fresp(−1) > 0.

Then E[n1(t+ 1)] ≥ 2ϵ0 t. By Chernoff Bounds (Theorem D.1), we have that n1(t+ 1) ≥ ϵ0t
holds with probability at least 1− q, where q = exp(−ϵ0t/12).

26For random variables X,Y on R, we say that X stochastically dominates Y if Pr[X ≥ x] ≥ Pr[Y ≥ x] for any
x ∈ R.
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We need to prove that PMR1(t)− PMR2(t) > 0. For any m1 and m2, consider the quantity

∆(m1,m2) := BIR2(m2 + 1)− BIR1(m1 + 1).

Whenever m1 ≥ ϵ0t/2− 1 and m2 < t, it holds that

∆(m1,m2) ≥ ∆(ϵ0t/2, t) ≥ BIR2(t)/2.

The above inequalities follow, resp., from algorithms’ Bayesian-monotonicity and (6). Now,

PMR1(t)− PMR2(t) = E
m1∼N1,t, m2∼N2,t

[∆(m1,m2)]

≥ −q + E
m1∼N1,t, m2∼N2,t

[∆(m1,m2) | m1 ≥ ϵ0t/2− 1]

≥ BIR2(t)/2− q
> BIR2(t)/4 > 0 (by Eq. (7)).

D.4 A little greedy goes a long way (Proof of Theorem 4.10)
Let rewgr(n) denote the Bayesian-expected reward of the “greedy choice” after after n− 1 steps
of alg1. Note that rew1(·) and rewgr(·) are non-decreasing: the former because alg1 is Bayesian-
monotone and the latter because the “greedy choice” is only improved with an increasing set
of observations, see Lemma B.1. Using (9), we conclude that the greedy modification alg2 is
Bayesian-monotone.

By definition of the “greedy choice,” rew1(n) ≤ rewgr(n) for all steps n. Moreover, by
Lemma 4.4, alg1 has a strictly smaller rew(n0) compared to BayesGreedy; so, rew1(n0) <
rew2(n0).

Let alg denote a copy of alg1 that is running “inside” alg2. Let m2(t) be the number of global
rounds before t in which the agent chooses principal 2 and alg is invoked; i.e., it is the number of
agents seen by alg before global round t. LetM2,t be the agents’ posterior distribution for m2(t).

We claim that in each global round t ≥ n0, distribution M2,t stochastically dominates dis-
tribution N1,t, and PMR1(t) < PMR2(t). We use induction on t. The base case t = n0 holds
because M2,t = N1,t (because the two algorithms coincide on the first n0 − 1 steps), and
PMR1(n0) < PMR2(n0) is proved as in (24), using the fact that rew1(n0) < rew2(n0).

The induction step is proved as follows. The induction hypothesis for global round t− 1 implies
that agent t− 1 is seen by alg with probability (1− ϵ0)(1− p), which is strictly larger than ϵ0, the
probability with which this agent is seen by alg2. Therefore,M2,t stochastically dominates N1,t.

PMR1(t) = E
n∼N1,t

[rew1(n+ 1)]

≤ E
m∼M2,t

[rew1(m+ 1)] (29)

< E
m∼M2,t

[(1− p) · rew1(m+ 1) + p · rewgr(m+ 1)] (30)

= PMR2(t).

Here (29) holds because E[rew1(·)] is Bayesian-monotone andM2,t stochastically dominates N1,t,
and inequality (30) holds because E[rew1(n0)] < E[rew2(n0)] andM2,t(n0) > 0.27

27If E[rew1(·)] is strictly increasing, then (29) is strict, too; this is becauseM2,t(t− 1) > N1,t(t− 1).
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D.5 SoftMax: proof of Theorem 4.19
Let β1 = min{c′0δ0, β0/20} with δ0 defined in (10). Recall each agent chooses alg1 with probability
at least fresp(−1) = ϵ0. By By condition (13) and the fact that BIR1(n) → 0, there exists some
sufficiently large T1 such that for any t ≥ T1, BIR1(ϵ0T1/2) ≤ β1/c

′
0 and BIR2(t) > e−ϵ0t/12.

Moreover, for any t ≥ T1, we know E[n1(t+1)] ≥ ϵ0 t, and by the Chernoff Bounds (Theorem D.1),
we have n1(t+ 1) ≥ ϵ0t/2 holds with probability at least 1− q1(t) with q1(t) = exp(−ϵ0t/12) <
BIR2(t). It follows that for any t ≥ T1,

PMR2(t)− PMR1(t) = E
m1∼N1,t, m2∼N2,t

[BIR1(m1 + 1)− BIR2(m2 + 1)]

≤ q1(t) + E
m1∼N1,t

[BIR1(m1 + 1) | m1 ≥ ϵ0t/2− 1]− BIR2(t)

≤ BIR1(ϵ0T1/2) ≤ β1/c
′
0

Since the response function fresp is c′0-Lipschitz in the neighborhood of [−δ0, δ0], each agent after
round T1 will choose alg1 with probability at least

pt ≥ 1
2
− c′0 (PMR2(t)− PMR1(t)) ≥ 1

2
− β1.

Next, we will show that there exists a sufficiently large T2 such that for any t ≥ T1 + T2, with
high probability n1(t) > max{n0, (1− β0)n2(t)}, where n0 is defined in (12). Fix any t ≥ T1 + T2.
Since each agent chooses alg1 with probability at least 1/2−β1, by Chernoff Bounds (Theorem D.1)
we have with probability at least 1 − q2(t) that the number of agents that choose alg1 is at least
β0(1/2− β1)t/5, where

q2(x) = exp
(
−1/3 (1/2− β1)(1− β0/5)2x

)
.

The number of agents received by alg2 is at most T1 + (1/2 + β1)t+ (1/2− β1)(1− β0/5)t.
Then as long as T2 ≥ 5T1

β0
, we can guarantee that n1(t) > n2(t)(1 − β0) and n1(t) > n0

with probability at least 1 − q2(t) for any t ≥ T1 + T2. Note that the weak BIR-dominance
condition in (12) implies that for any t ≥ T1 + T2 with probability at least 1 − q2(t), we have
BIR1(n1(t)) < (1− α0) BIR2(n2(t)).

It follows that for any t ≥ T1 + T2,

PMR1(t)− PMR2(t) = E
m1∼N1,t, m2∼N2,t

[BIR2(m2 + 1)− BIR1(m1 + 1)]

≥ (1− q2(t))α0 BIR2(t)− q2(t) ≥ α0 BIR2(t)/4,

where the last inequality holds as long as q2(t) ≤ α0BIR2(t)/4, and is implied by the condition
in (13) as long as T2 is sufficiently large. Hence, by the definition of our SoftMax response function
and assumption in (10), we have Pr[it = 1] ≥ 1/2 + 1/4 c0 α0 BIR2(t).
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E Full experimental results
In this appendix we provide full results for the experiments described in Section 5.

E.1 “Performance In Isolation” (Section 5.2)
We present the full plots for Section 5.2: mean reputation trajectories and instantaneous reward
trajectories for all three MAB instances. For “instantaneous reward” at a given time t, we report
the average (over all mean reward vectors) of the mean rewards at this time, instead of the average
of the realized rewards, so as to decrease the noise. In all plots, the shaded area represents 95%
confidence interval.
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Figure 10: Mean Reputation (left) and Mean Instantaneous Reward (right) for Heavy Tail Instance
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Figure 11: Mean Reputation (left) and Mean Instantaneous Reward (right) for Needle In Haystack Instance
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Figure 12: Mean Reputation (left) and Mean Instantaneous Reward (right) for Uniform Instance

E.2 First-mover regime (Section 5.3)
We present additional experiments on the first-mover regime from Section 5.3, across various MAB
instances and various values of the incumbent advantage parameter X .

Each experiment is presented as a table with the same semantics as in the main text. Namely,
each cell in the table describes the duopoly game between the entrant’s algorithm (the row) and
the incumbent’s algorithm (the column). The cell specifies the entrant’s market share (fraction of
rounds in which it was chosen) for the rounds in which he was present. We give the average (in
bold) and the 95% confidence interval. NB: smaller average is better for the incumbent.

X = 50 X = 200

TS BEG BG TS BEG BG

TS 0.054 ±0.01 0.16 ±0.02 0.18 ±0.02 0.003 ±0.003 0.083 ±0.02 0.17 ±0.02

BEG 0.33 ±0.03 0.31 ±0.02 0.26 ±0.02 0.045 ±0.01 0.25 ±0.02 0.23 ±0.02

BG 0.39 ±0.03 0.41 ±0.03 0.33 ±0.02 0.12 ±0.02 0.36 ±0.03 0.3 ±0.02

Table 7: Heavy-Tail MAB Instance
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X = 300 X = 500

TS BEG BG TS BEG BG

TS 0.0017 ±0.002 0.059 ±0.01 0.16 ±0.02 0.002 ±0.003 0.043 ±0.01 0.16 ±0.02

BEG 0.029 ±0.007 0.23 ±0.02 0.23 ±0.02 0.03 ±0.007 0.21 ±0.02 0.24 ±0.02

BG 0.097 ±0.02 0.34 ±0.03 0.29 ±0.02 0.091 ±0.01 0.32 ±0.03 0.3 ±0.02

Table 8: Heavy-Tail MAB Instance

X = 50 X = 200

TS BEG BG TS BEG BG

TS 0.34 ±0.03 0.4 ±0.03 0.48 ±0.03 0.17 ±0.02 0.31 ±0.03 0.41 ±0.03

BEG 0.22 ±0.02 0.34 ±0.03 0.42 ±0.03 0.13 ±0.02 0.26 ±0.02 0.36 ±0.03

BG 0.18 ±0.02 0.28 ±0.02 0.37 ±0.03 0.093 ±0.02 0.23 ±0.02 0.33 ±0.03

Table 9: Needle In Haystack MAB Instance

X = 300 X = 500

TS BEG BG TS BEG BG

TS 0.1 ±0.02 0.28 ±0.03 0.39 ±0.03 0.053 ±0.01 0.23 ±0.02 0.37 ±0.03

BEG 0.089 ±0.02 0.23 ±0.02 0.36 ±0.03 0.051 ±0.01 0.2 ±0.02 0.33 ±0.03

BG 0.05 ±0.01 0.21 ±0.02 0.33 ±0.03 0.031 ±0.009 0.18 ±0.02 0.31 ±0.02

Table 10: Needle In Haystack MAB Instance

X = 50 X = 200

TS BEG BG TS BEG BG

TS 0.27 ±0.03 0.21 ±0.02 0.26 ±0.02 0.12 ±0.02 0.16 ±0.02 0.2 ±0.02

BEG 0.39 ±0.03 0.3 ±0.03 0.34 ±0.03 0.25 ±0.02 0.24 ±0.02 0.29 ±0.02

BG 0.39 ±0.03 0.31 ±0.02 0.33 ±0.02 0.23 ±0.02 0.24 ±0.02 0.29 ±0.02

Table 11: Uniform MAB Instance
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X = 300 X = 500

TS BEG BG TS BEG BG

TS 0.094 ±0.02 0.15 ±0.02 0.2 ±0.02 0.061 ±0.01 0.12 ±0.02 0.2 ±0.02

BEG 0.2 ±0.02 0.23 ±0.02 0.29 ±0.02 0.17 ±0.02 0.21 ±0.02 0.29 ±0.02

BG 0.21 ±0.02 0.23 ±0.02 0.29 ±0.02 0.18 ±0.02 0.22 ±0.02 0.29 ±0.02

Table 12: Uniform MAB Instance

E.3 Reputation Advantage vs. Data Advantage (Section 5.4)
This section presents full experimental results on reputation advantage vs. data advantage.

Each experiment is presented as a table with the same semantics as in the main text. Namely,
each cell in the table describes the duopoly game between the entrant’s algorithm (the row) and the
incumbent’s algorithm (the column). The cell specifies the entrant’s market share for the rounds in
which hit was present: the average (in bold) and the 95% confidence interval. NB: smaller average
is better for the incumbent.

Data Advantage Reputation Advantage

TS BEG BG TS BEG BG

TS 0.0096 ± 0.006 0.11 ± 0.02 0.18 ± 0.02 0.021 ± 0.009 0.16 ± 0.02 0.21 ± 0.02

BEG 0.073 ± 0.01 0.29 ± 0.02 0.25 ± 0.02 0.26 ± 0.03 0.3 ± 0.02 0.26 ± 0.02

BG 0.15 ± 0.02 0.39 ± 0.03 0.33 ± 0.02 0.34 ± 0.03 0.4 ± 0.03 0.33 ± 0.02

Table 13: Heavy Tail MAB Instance, X = 200

Data Advantage Reputation Advantage

TS BEG BG TS BEG BG

TS 0.0017 ±0.002 0.06 ±0.01 0.18 ±0.02 0.022 ±0.009 0.13 ±0.02 0.21 ±0.02

BEG 0.04 ±0.009 0.24 ±0.02 0.25 ±0.02 0.26 ±0.03 0.29 ±0.02 0.28 ±0.02

BG 0.12 ±0.02 0.35 ±0.03 0.33 ±0.02 0.33 ±0.03 0.39 ±0.03 0.34 ±0.02

Table 14: Heavy Tail MAB Instance, X = 500
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Data Advantage Reputation Advantage

TS BEG BG TS BEG BG

TS 0.25 ± 0.03 0.36 ± 0.03 0.45 ± 0.03 0.35 ± 0.03 0.43 ± 0.03 0.52 ± 0.03

BEG 0.21 ± 0.02 0.32 ± 0.03 0.41 ± 0.03 0.26 ± 0.03 0.36 ± 0.03 0.43 ± 0.03

BG 0.18 ± 0.02 0.29 ± 0.03 0.4 ± 0.03 0.19 ± 0.02 0.3 ± 0.02 0.36 ± 0.02

Table 15: Needle-in-Haystack MAB Instance, X = 200

Data Advantage Reputation Advantage

TS BEG BG TS BEG BG

TS 0.098 ±0.02 0.27 ±0.03 0.41 ±0.03 0.29 ±0.03 0.44 ±0.03 0.52 ±0.03

BEG 0.093 ±0.02 0.24 ±0.02 0.38 ±0.03 0.19 ±0.02 0.35 ±0.03 0.42 ±0.03

BG 0.064 ±0.01 0.22 ±0.02 0.37 ±0.03 0.15 ±0.02 0.27 ±0.02 0.35 ±0.02

Table 16: Needle-in-Haystack MAB Instance, X = 500

Data Advantage Reputation Advantage

TS BEG BG TS BEG BG

TS 0.2 ± 0.02 0.22 ± 0.02 0.27 ± 0.03 0.27 ± 0.03 0.23 ± 0.02 0.27 ± 0.02

BEG 0.33 ± 0.03 0.32 ± 0.03 0.35 ± 0.03 0.4 ± 0.03 0.3 ± 0.02 0.32 ± 0.02

BG 0.32 ± 0.03 0.31 ± 0.03 0.35 ± 0.03 0.36 ± 0.03 0.29 ± 0.02 0.3 ± 0.02

Table 17: Uniform MAB Instance, X = 200

Data Advantage Reputation Advantage

TS BEG BG TS BEG BG

TS 0.14 ±0.02 0.18 ±0.02 0.26 ±0.03 0.24 ±0.02 0.2 ±0.02 0.26 ±0.02

BEG 0.26 ±0.02 0.26 ±0.02 0.34 ±0.03 0.37 ±0.03 0.29 ±0.02 0.31 ±0.02

BG 0.25 ±0.02 0.27 ±0.02 0.34 ±0.03 0.35 ±0.03 0.27 ±0.02 0.3 ±0.02

Table 18: Uniform MAB Instance, X = 500
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E.4 Mean Reputation vs. Relative Reputation
We present the experiments omitted from Section 5.6. Namely, experiments on the Heavy-Tail MAB
instance with K = 3 arms, both for “performance in isolation” and the permanent duopoly game.
We find that BayesEpsilonGreedy > BayesGreedy according to the mean reputation trajectory
but that BayesGreedy > BayesEpsilonGreedy according to the relative reputation trajectory and
in the competition game. As discussed in Section 5.6, the same results also hold for K = 10 for the
warm starts that we consider.

The result of the permanent duopoly experiment for this instance is shown in Table 19.

Heavy-Tail

T0 = 20 T0 = 250 T0 = 500

TS vs. BG
0.4 ±0.02
EoG 770 (0)

0.59 ±0.01
EoG 2700 (2979.5)

0.6 ±0.01
EoG 2700 (3018)

TS vs. BEG
0.46 ±0.02
EoG 830 (0)

0.73 ±0.01
EoG 2500 (2576.5)

0.72 ±0.01
EoG 2700 (2862)

BG vs. BEG
0.61 ±0.01

EoG 1400 (556)
0.61 ±0.01

EoG 2400 (2538.5)
0.6 ±0.01

EoG 2400 (2587.5)

Table 19: Duopoly Experiment: Heavy-Tail, K = 3, T = 5000.
Each cell describes a game between two algorithms, call them Alg1 vs. Alg2, for a particular value of the warm start T0.
Line 1 in the cell is the market share of Alg 1: the average (in bold) and the 95% confidence band. Line 2 specifies the
“effective end of game” (EoG): the average and the median (in brackets).

The mean reputation trajectories for algorithms’ performance in isolation and the relative
reputation trajectory of BayesEpsilonGreedy vs. BayesGreedy:
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Figure 13: Mean reputation (left) and relative reputation trajectory (right) for Heavy-Tail, K = 3
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